• Title/Summary/Keyword: voltage capacity

Search Result 979, Processing Time 0.033 seconds

Stability Evaluation of Series and Parallel Varistor Combination Using Thermal Image Analysis (열화상 분석을 통한 바리스터의 직렬과 병렬 조합의 안전성 평가)

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung;Han, Hoo-Sek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.22-29
    • /
    • 2006
  • According to the recent revision of KS on the basis of the IEC, equipotential grounding systems has been come into focus and the use of surge protective devices(SPD) has been increased radically in order to operate the power system stably. $Z_nO$ varistor with non-linear resistance, which has an outstanding voltage-current(V-I) characteristic, is mainly used in power system to limit surge voltage and divert surge current. $Z_nO$ varistors are packaged several types based on the circuit assembly to be connected to a.c. power line. When the user assemble the $Z_nO$ varistors into parallel or series circuit package, there are my things to be taken into consideration including functions and thermal stability because they are directly related to the safety. We compare stabilities of each assembly type by measuring residual voltage, discharge current, leakage current and surface temperature concerned to the protection performances between a single device with a 40[kA] of current capacity and parallel or series circuits type of varistor package.

A study on the Normal Steady State Operation Characteristics of PV System Based on the Test Device (태양광전원용 시험장치를 이용한 정상상태 운용특성에 관한 연구)

  • Hasan, Md.Mubdiul;Munkbaht, Munkbaht;Kim, Byung-Ki;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.512-516
    • /
    • 2012
  • Recently the Korean government's green energy growth policy has been taken at the national level due to the sufficient supply of renewable energy. Some specific technique should be taken in consideration for the operation of the grid voltage and power quality management. In this case, there may have some chance of operational problems. Typical problems arise when grid-connected solar power produced by Pacific sunshine. The power flow in the reverse direction can create overvoltage on the distribution line and gives value of malfunction on the system. Line voltage and overvoltage adjustment practice can stop these symptoms occurred. Under these circumstances, this paper presents an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV system simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and Power factor. This paper also proposes a new calculation algorithm for voltage profile to make comparison between calculation values and test device values. The results show that the simulation results for the normal operation characteristics of PV systems which are very practical and effective.

  • PDF

Developement of Electrical Load Testing System Implemented with Power Regenerative Function (회생전력 기능을 갖는 전기부하시험장치 개발)

  • Do, Wang-Lok;Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The electrical load testing system developed from this study was designed to control rated-capacity-testing or variable-load-testing in an active and precise manner and save electric energy during testing, and also to convert the saved electric energy through the electrical load testing system to grid line. As for the device under testing, it was designed to be applied to not only transformer, rectifier, voltage regulator, inverter which require grid voltage source but, also applied to electric power, aerogenerator, photovoltaic, hybrid generator, battery, etc. which do not require grid voltage source. The system was designed to return the power consumed during the testing to the grid line by connecting the synchronizing pwm inverter circuit to the grid voltage source, and was also made to enable the being-tested system from disuse of approximately 93.4% energy when compared to the conventional load testing system which has used the passive resistor.

Development of the Starting Algorithm and Starter for Turbo Generator (터보 제너레이터의 시동 알고리즘 및 시동기 개발)

  • 노민식;박승엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The starter of the turbo generator is composed of a high speed generator(HSG), an inverter and a boost converter instead of a gearbox, a DC motor and a low-voltage battery in the starter of the turbo shaft generation system. Because turbo generator is needed a high speed motoring at start-up, high speed generator has a low leakage inductance and inverter need a high DC link voltage. In this study, for developing the stater of a turbo generator, a boost converter with a high capacity was developed to convert high voltage from a low battery voltage. And for controlling a high frequency current to be injected to a motor winding with a low leakage inductance, the inverter with a high precision and a high speed operation was designed and for a stable ignition, the starting algorithm of a turbo generator was proposed. Turbo generator was started by the starter developed to verify the performances.

Electrokinetic Extraction of Metals from Marine Sediment (중금속으로 오염된 해양퇴적토의 전기동력학적 정화)

  • Kim, Kyung-Jo;Yoo, Jong-Chan;Yang, Jung-Seok;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

Multiple Model Adaptive Estimation of the SOC of Li-ion battery for HEV/EV (다중모델추정기법을 이용한 HEV/EV용 리튬이온전지의 잔존충전용량 추정)

  • Jung, Hae-Bong;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • This paper presents a new state of charge(SOC) estimation of large capacity of Li-ion battery (LIB) based on the multiple model adaptive estimation(MMAE) method. We first introduce an equivalent circuit model of LIB. The relationship between the terminal voltage and the open circuit voltage(OCV) is nonlinear and may vary depending on the changes of temperature and C-rate. In this paper, such behaviors are described as a set of multiple linear time invariant impedance models. Each model is identified at a temperature and a C-rate. These model set must be obtained a priori for a given LIB. It is shown that most of impedances can be modeled by first-order and second-order transfer functions. For the real time estimation, we transform the continuous time models into difference equations. Subsequently, we construct the model banks in the manner that each bank consists of four adjacent models. When an operating point of cell temperature and current is given, the corresponding model bank is directly determined so that it is included in the interval generated by four operating points of the model bank. The MMAE of SOC at an arbitrary operating point (T $^{\circ}C$, $I_{bat}$[A]) is performed by calculating a linear combination of voltage drops, which are obtained by four models of the selected model bank. The demonstration of the proposed method is shown through simulations using DUALFOIL.

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Development of Arc Welding Machines DC-DC Converter using A Novel Full-Bridge Soft Switching PWM Inverter (새로운 풀-브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발)

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.26-33
    • /
    • 2008
  • This paper presents a new full-bridge soft switching PWM DC-DC converter circuit topology that adding one switcher, one lossless snubber quasi-resonance capacity to power source for general welding machine This full-bridge soft switching DC-DC convoter· topology can applicable 600[V] switching device (IGBT)incase of AC 400[V] common power source because the voltage of active switcher is 1/2 of DC bus line voltage. And low voltage hight current out)ut that first coil current is smaller than second coil current in high frequency transformer can be obtained with decreasing path loss in conventional DC bus line switcher. As it operate ZCS/ZVS in full range, high frequency, high efficiency and high output are implemented at low voltage and high DC current switching power supplies. All of this items are got from simulation and the result of experiment. If make up for the weak points of this proposed circuit, it will be used more easily for next generation TIG, MIG and MAG type of arc-welding machine.

Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation

  • Li, Zhongwen;Zang, Chuanzhi;Zeng, Peng;Yu, Haibin;Li, Hepeng;Li, Shuhui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.455-468
    • /
    • 2015
  • A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.