DOI QR코드

DOI QR Code

Electrokinetic Extraction of Metals from Marine Sediment

중금속으로 오염된 해양퇴적토의 전기동력학적 정화

  • Kim, Kyung-Jo (Department of Water Resource, Sung Kyun Kwan University) ;
  • Yoo, Jong-Chan (Department of Environmental Engineering, Chonbuk National University) ;
  • Yang, Jung-Seok (KIST-Gangneung Institute) ;
  • Baek, Kitae (Department of Environmental Engineering, Chonbuk National University)
  • 김경조 (성균관대학교 수자원전문대학원) ;
  • 유종찬 (전북대학교 환경공학과) ;
  • 양중석 (한국과학기술연구원 강릉분원) ;
  • 백기태 (전북대학교 환경공학과)
  • Received : 2013.07.01
  • Accepted : 2013.10.09
  • Published : 2013.12.01

Abstract

Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

퇴적토는 미사 및 점토와 같은 미세토의 함량이 높으며, 유기물질이 많으며, 완충능이 크기 때문에 퇴적토로부터 중금속을 제거하는 것은 매우 어렵다. 본 연구에서는, 중금속으로 오염된 퇴적토에서 중금속을 제거하기 위해 2 V/cm의 일정한 전압경사를 적용한 실험실 규모의 전기동력학적 (EK) 정화공법을 사용하였다. 실험을 위해 적용한 음극 전해질로는 0.1 M의 ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, HCl, 그리고 수돗물을 사용하였으며, 양극 전해질로는 수돗물을 사용하여 순환시켜 주었다. 음극 전해질로 CA를 사용한 실험군에서 Ni, Cu, Zn, Pb는 각각 초기와 비교하여 92.4, 96.1, 97.1, 88.1%의 중금속 제거효율을 보였다. 높은 전압경사를 적용하게 되면, 음극 전해질내에 citrate 및 EDTA가 퇴적토로 이동이 용이하게 되며, 그로 인해 중금속-킬레이트 화합물을 형성하여 중금속의 추출률을 높일 수 있었다. 이러한 결과를 바탕으로, 높은 전압경사를 적용한 EK 실험에서 음극 전해질로 EDTA 혹은 CA를 사용하면 퇴적토로부터 중금속을 효과적으로 추출할 수 있다고 판단된다.

Keywords

References

  1. Kim, K. J., Kim, D. H., Yoo, J. C. and Baek, K., "Electrokinetic Extraction of Heavy Metals from Dredged Marine Sediment," Sep. Purif. Technol., 79, 164-169(2011). https://doi.org/10.1016/j.seppur.2011.02.010
  2. Park, S. Y., Park, G. Y., Kim, D. H., Yang, J. S. and Baek K., "Electrokinetic Separation of Heavy Metals from Wastewater Treatment Sludge," Sep. Sci. Technol., 45, 1982-1987(2010). https://doi.org/10.1080/01496395.2010.493836
  3. Nystrom, G. M., Ottosen, L. M. and Villumsen, A., "Test of Experimental Set-ups for Electrodialytic Removal of Cu, Zn, Pb and Cd from Different Contaminated Harbour Sediments," Eng. Geol., 77, 349-357(2005). https://doi.org/10.1016/j.enggeo.2004.07.025
  4. Meegoda, J. N. and Perera, R., "Ultrasound to Decontaminate Heavy Metals in Dredged Sediments," J. Hazard. Mater., 85, 73-89(2001). https://doi.org/10.1016/S0304-3894(01)00222-9
  5. Li, F., Bade, R., Oh, S. and Shin, W. S., "Immobilization of Heavy Metals in a Contaminated Soil Using Organic Sludge Char and Other Binder," Korean J. Chem. Eng., 29, 1362-1372(2012). https://doi.org/10.1007/s11814-012-0015-2
  6. Yoo, J. C., Lee, C. D., Yang, J. S. and Baek, K., "Extraction Characteristics of Heavy Metals from Marine Sediments," Chem. Eng. J., 228, 688-699(2013). https://doi.org/10.1016/j.cej.2013.05.029
  7. Yeung, A. T., "Milestone Developments, Myths, and Future Directions of Electrokinetic Remediation," Sep. Purif. Technol., 79, 124-132(2011). https://doi.org/10.1016/j.seppur.2011.01.022
  8. Acar, Y. B. and Alshawabkeh, A. N., "Principles of Electrokinetic Remediation," Environ. Sci. Technol., 27, 2638-2647 (1993). https://doi.org/10.1021/es00049a002
  9. Jeon, C. S., Yang, J. S., Kim, K. J. and Baek K., "Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process," Clean-Soil Air Water, 38, 189-193(2010). https://doi.org/10.1002/clen.200900190
  10. Kim, W. S., Park, G. Y., Kim, D. H., Jung, H. B., Ko, S. H. and Baek, K., "In situ Field Scale Electrokinetic Remediation of Multi-metals Cojntaminated Paddy Soil: Influence of Electrode Configuration," Electrochim. Acta., 86, 89-95(2012). https://doi.org/10.1016/j.electacta.2012.02.078
  11. Jo, S. U., Kim, D. H., Yang, J. S. and Baek, K., "Pulse-enhanced Electrokinetic Restoration of Sulfate-containing Saline Greenhouse Soil," Electrochim. Acta., 86, 57-62 (2012). https://doi.org/10.1016/j.electacta.2012.05.128
  12. Kim, D. H., Jo, S. U., Choi, J. H., Yang, J. S. and Baek, K., "Hexagonal two Dimensional Electrokinetic Systems for Restoration of Saline Agricultural Lands: A Pilot Study," Chem. Eng. J., 198-199, 110-121(2012). https://doi.org/10.1016/j.cej.2012.05.076
  13. Yang, J. W. and Lee, Y. J., "Status of Soil Remediation and Technology Development in Korea," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45, 311-318(2007).
  14. Ryu, B. G., Park, G. Y., Yang, J. W. and Baek, K., "Electrolyte Conditioning for Electrokinetic Remediation of As, Cu, and Pb-Contaminated Soil," Sep. Purif. Technol., 79, 170-176(2011). https://doi.org/10.1016/j.seppur.2011.02.025
  15. Yang, J. S., Lee, J. Y., Baek, K., Kwon, T. S. and Choi, J., "Extraction Behavior of As, Pb, and Zn from Mine Tailings with Acid and Base Solutions," J. Hazard. Mater., 171, 443-451(2009). https://doi.org/10.1016/j.jhazmat.2009.06.021
  16. Kim, D. H., Ryu, B. G., Park, S. W., Seo, C. I. and Baek, K., "Electrokinetic Remediation of Zn and Ni-contaminated Soil," J. Hazard. Mater., 165, 501-505(2009). https://doi.org/10.1016/j.jhazmat.2008.10.025
  17. Dermont, G., Bergeron, M., Mercier, G. and Richer-Laflche, M., "Soil Washing for Metal Removal: A Review of Physical/chemical Technologies and Field Applications," J. Hazard. Mater., 152, 1-31(2008). https://doi.org/10.1016/j.jhazmat.2007.10.043
  18. Jain, C. K., "Metal Fractionation Study on Bed Sediments of River Yamuna, India," Water Res., 38, 569-578(2004). https://doi.org/10.1016/j.watres.2003.10.042
  19. Kaya, A. and Yukselen, Y., "Zeta Potential of Soils with Surfactants and Its Relevance to Electrokinetic Remediation," J. Hazard. Mater., 120, 119-126(2005). https://doi.org/10.1016/j.jhazmat.2004.12.023
  20. Bodog, I., Polyak, K. and Hlavay, J., "Determination of Heavy Metals in Lake and River Sediments by Selective Leaching," Int. J. Environ. Anal. Chem., 66, 79-94(1997). https://doi.org/10.1080/03067319708028353
  21. Altaee, A., Smith, R. and Mikhalovsky, S., "The Feasibility of Decontamination of Reduced Saline Sediments from Copper Using the Electrokinetic Process," J. Environ. Manage., 88, 1611-1618(2008). https://doi.org/10.1016/j.jenvman.2007.08.008
  22. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M. and Parker, R., "Electrokinetic Remediation - Basics and Technology Status," J. Hazard. Mater., 40, 117-137(1995). https://doi.org/10.1016/0304-3894(94)00066-P

Cited by

  1. Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil vol.36, pp.11, 2019, https://doi.org/10.1007/s11814-019-0383-y