• Title/Summary/Keyword: voltage balance

Search Result 301, Processing Time 0.026 seconds

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 플라잉 커패시터 전압 균형을 위한 캐리어 로테이션 기법)

  • 이원교;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.469-477
    • /
    • 2003
  • This paper proposes a Carrier-Rotation (CR) PWM technique that is a new solution for the voltage unbalancing problem of flying capacitors in the Flying Capacitor Multi-level Inverter (FCMI). The proposed technique equalizes the utilization of phase leg voltage redundancies corresponding to the charging and the discharging state of individual flying capacitors during each switching period of all the switches. Therefore, the charging and the discharging quantity of flying capacitors are equal, which makes the average variation of flying capacitor voltages become zero and keeps their voltage stable during minimum specified period. It also has the reduced harmonic contents of output voltage and the same switch utilization since all the carrier signals are in phase and the switching frequency of each switch is identical. The proposed technique is analyzed precisely in flying capacitor 3-level inverter and then it has expanded to the FCMI (N-level, N>3). Experimental results on the laboratory prototype flying capacitor 3-level inverter confirm the validity of the proposed technique.

Pulse generator using series-connected boost converter (승압헝 컨버터의 직렬 배열에 의한 펄스전압 발생회로)

  • Baek, J.W.;Yoo, D.W.;Byun, Y.B.;Kim, T.J.;Cho, G.Y.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1106-1109
    • /
    • 2002
  • This paper introduces an improved pulse generator using power semiconductors. The proposed circuit consists of the series connected boost converter structure. In the presented circuits, high voltage pulse is generated by series-connection of capacitors and IGBTs. The charging of capacitors and voltage balance of IGBTs is done automatically. To verify the proposed circuit, 1kV, 25A pulse generator is manufactured and tested.

  • PDF

A New Current Compensation Estimation Method For Single Phase Active Power Filter (단상 액티브 파워 필터를 위한 새로운 전류 보상 방법)

  • 곽상신;이무영
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.819-822
    • /
    • 1998
  • A new active power filter (APF) circuit with a current compesation estimation method is proposed. The current compensation estimation method replaces a current sensor with an estimating circuit and therefore reduces the implementation cost In addition, a simple control scheme, based on the energy balance concept, is adopted to control the voltage of a DC capacitor. Therefore energy change in the DC capacitor can be compensanted in the next cycle. Since a sampling technique is used, a larger DC capacitor voltage ripple can be permissible and a relatively smaller DC capacitor can be used. The proposed method has advantages of the reduction of one current sensor, low implementation cost, and fast transient responses. The theoretical analysis and simulation results are given. The proposed control method is successfully verified by computer simulation.

  • PDF

Analysis of Isolated Boost Converter (절연된 부스트 변환기의 해석)

  • Kim, Hee-Sun;Chung, Dae-Taek;Won, Hwa-Young;Lee, Hyoung-Ju;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.84-86
    • /
    • 2009
  • Isolated boost converter is desirable in the dc/dc converter applications where isolation is required and a large step up is needed. In this paper, it is proposed and analyzed the isolated boost converter which can step up low input voltage to high output voltage using transformer. Instead of using a conventional scheme, the proposed converter has the reset winding for volt-sec balance of transformer. Finally, the validity of the proposed isolated boost converter is verified by simulation.

  • PDF

Integrated Series and Shunt Inverter for Voltage Sag and Power Transfer Flexibility (전압 강하 및 전력 전달 유연성을 위한 직렬 및 분로 통합형 인버터)

  • Simatupang, Desmon Petrus;Bae, Sungjin;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.141-142
    • /
    • 2017
  • In this paper, integrated series and shunt inverter is presented to solve power quality problems in distribution line system. In this configuration consists of series inverter and shunt inverter. Series inverter acts as DVR to compensate voltage during sagging occurred and shunt inverter optimize to inject balance active power from distributed power source like PV system with Maximum Power Point Tracing (MPPT). Finally, the proposed configuration is verified through the PSiM simulation.

  • PDF

High Efficiency Multi-Channel LED Driver IC with Low Current-Balance Error Using Current-Mode Current Regulator

  • Yoon, Seong-Jin;Cho, Je-Kwang;Hwang, In-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1593-1599
    • /
    • 2017
  • This paper presents a multi-channel light-emitting diode (LED) driver IC with a current-mode current regulator. The proposed current regulator replaces resistors for current sensing with a sequentially controlled single current sensor and a single regulation loop for sensing and regulating all LED channel currents. This minimizes the current mismatch among the LED channels and increases voltage headroom or, equivalently, power efficiency. The proposed LED driver IC was fabricated in a $0.35-{\mu}m$ BCD 60-V high voltage process, and the chip area is $1.06mm^2$. The measured maximum power efficiency is 93.4 % from a 12-V input, and the inter-channel current error is smaller than as low as ${\pm}1.3%$ in overall operating region.

CIRCUIT MODEL SIMULATION FOR IONOSPHERIC PLASMA RESPONSE TO HIGH POTENTIAL SYSTEM

  • Rhee, Hwang-Jae;Raitt, W.-John
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • When a deployed probe is biased by a high positive potential during a space experiment, the payload is induced to a negative voltage in order to balance the total current in the whole system. The return currents are due to the responding ions and secondary electrons on the payload surface. In order to understand the current collection mechanism, the process was simulated with a combination of resistor, inductor, and capacitor in SPICE program which was equivalent to the background plasma sheath. The simulation results were compared with experimental results from SPEAR-3 (Space Power Experiment Aboard Rocket-3). The return current curve in the simulation was compatible to the experimental result, and the simulation helped to predict the transient plasma response to a high voltage during the plasma sheath formation.

  • PDF

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Efficient Organic Light-Emitting Diodes with a use of Hole-injection Buffer Layer

  • Kim, Sang-Keol;Chung, Dong-Hoe;Chung, Taek-Gyun;Kim, Tae-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.766-769
    • /
    • 2002
  • We have seen the effects of hole-injection buffer layer in organic light-emitting diodes using copper phthalocyanine(CuPc), poly(vinylcarbazole)(PVK), and Poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)(PEDOT:PSS) in a device structure of ITO/buffer/TPD/$Alq_3$/Al. Polymer PVK and PEDOT:PSS buffer layer was made using spin casting method and the CuPc layer was made using thermal evaporation. Current-voltage characteristics, luminance-voltage characteristics and efficiency of device were measured at room temperature with a thickness variation of buffer layer. We have obtained an improvement of the external quantum efficiency by a factor of two, four, and two and half when the CuPc, PVK, and PEDOT:PSS buffer layer are used, respectively. The enhancement of the efficiency is attributed to the improved balance of holes and elelctrons due to the use of hole-injection buffer layer. The CuPc and PEDOT:PSS layer functions as a hole-injection supporter and the PVK layer as a hole-blocking one.

  • PDF