• Title/Summary/Keyword: voltage and frequency controller

Search Result 403, Processing Time 0.031 seconds

A Pulse Width Modulation(CPWM) Technique with Chaos Phenomenon (혼돈 특성을 갖는 펄스폭 변조(CPWM)방식)

  • Kim, J.N.;Kim, J.H.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.270-274
    • /
    • 2006
  • This paper proposes a Chaos Pulse Width Modulation(CPWM) technique. For generating the chaotic numbers by chaos phenomenon, chaos area $\lambda$=0.99 in bifurcation tree of the proposed double tent mapping is used. A micro-controller is used for the generation of chaos numbers and triangular carrier with chaotic frequency is obtained through the process of frequency modulation according to the generated chaos numbers. The experiments are executed with the 1.5kw induction motor coupled with a 2.5A load. The experimental results show that the voltage / current spectra are spread to a chaotic range, and the switching noise of motor is reduced by the proposed method compared to the fixed frequency PWM method.

  • PDF

Digital-To-Phase-Shift PWM Circuit for High Power ZVS FB DC/DC Converter (대용량 ZVS FB DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • 김은수;김태진;최해영;박순구;김윤호;이재학
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.618-621
    • /
    • 1999
  • With the advent of the high-speed microprocessor and DSP, the possibility of executing a control strategy in digital domain has become a reality. By the use of the DSP and microprocessor controller, many high power drive system may be enhanced resulting in the improved robustness to EMI, the ability to communicate the operating conditions and the ease of adjusting the control parameters. But, the digital controller using DSP or microprocessor is not applied in the high frequency switching power supplies, especially full bridge DC/DC converter. So, this paper presents the method and realization of designing a digital-to-phase shift PWM circuit for full digital controlled full bridge DC/DC converter with zero voltage switching. The operating principles, simulation and experimental results will be presented.

  • PDF

Sensorless control of the Next Generation High Speed Drive System in low speed region (차세대 고속전철 저속영역에서의 센서리스 제어)

  • Jin, Kang-Hwan;Suh, Yong-Hun;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.82-87
    • /
    • 2011
  • In this paper, a sensorless speed control system is designed for the next generation high speed railway at zero and low speed region. The applied vector control scheme is a maximum torque per ampere(MTPA) method to utilize reluctance torque of IPMSM. The designed sensorless control scheme is a rotating high frequency voltage signal injection method. To verify the designed system, a simulator for the vector controller and sensorless controller is implemented using Matlab/simulink.

Coordinated State-of-Charge Control Strategy for Microgrid during Islanded Operation

  • Kim, Jong-Yul;Jeon, Jin-Hong;Kim, Seul-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.824-833
    • /
    • 2012
  • In this paper, a coordinated state-of-charge (SOC) control strategy for the energy storage system (ESS) operating under microgrid islanded mode to stabilize the frequency and voltage was proposed. The proposed SOC control loop is made up of PI controller, which uses a SOC state of the energy storage system as an input and an auxiliary reference value of secondary control as an output. The SOC controller changes the auxiliary reference value of secondary control to charge or discharge the ESS. To verify the proposed control strategy, PSCAD/EMTDC simulation study was performed. The simulation results show that the SOC of the ESS can be regulated at the desired operating range without degrading the stabilizing control performance by proposed coordinated SOC control method.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

The Design and Implementation of a 5 kW Programmable Three-Phase Harmonic Generator

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Choi, Myoung-Il;Park, Chee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • This paper presents the design and implementation of a 5kW programmable three-phase harmonic generator, which is capable of generating sinusoidal output voltages with adjustable output amplitude and frequency over a wide range as well as arbitrary waveforms. The considered harmonic generator is a linear power amplifier type. This system consists mainly of a power converter to generate and amplify waveform signals, a controller to control the desired output signal and measure the output parameters including voltage and current, and a control program to set the desired output and display the output values. The prototype programmable three-phase harmonic generator has been constructed and tested. Test results show that the developed programmable three-phase harmonic generator performs well.

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

A Comparison of Operation Characteristics for $3\Phi$Boost/Buck Converter to Inverter Arc Welding Machine (인버터 아크용접기를 위한 3상 승압/강압형 컨버터의 운전특성비교)

  • 최해룡;구영모;채영민;최규하;목형수;김규식;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.260-264
    • /
    • 1998
  • Three phase Boost/Buck converter which have economical merits and simple control scheme, are analyzed and evaluated through comparative methods and digital simulation for equivalent load. Those play a part of voltage boost/buck as well as power factor correction with single switch. Controller operating in constant and variable frequency is used for rapid output response and stable system condition respectively. Moreover low THD property of single switched converters is available for inverter arc welding machine known as high power and low power factor. So, in this paper a comparison of the characteristics in boost and buck converter is described and then simulation results conforms the merits from point of view of power factor and voltage regulator.

  • PDF