• 제목/요약/키워드: voltage and current stresses

검색결과 128건 처리시간 0.022초

전류불연속 모드 절연형 벅-부스트 컨버터에 관한 연구 (A Study on Isolated Buck-Boost Converter by Discontinuous Conduction Mode)

  • 곽동걸;이봉섭;김춘삼;심재선;박영직
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2010
  • In this paper, authors propose a new buck-boost converter of discontinuous conduction mode (DCM) added electric isolation. The proposed converter with DCM eliminates the complicated circuit control requirement and reduces the size of components. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter uses a lossless snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

조명 제어용 170W급 LLC 공진형 하프브리지 컨버터의 효율 특성 (The efficiency Characteristics of LLC Half-Bridge Resonant Converter for Universal Lighting control system)

  • 임성진;김성완;김창선;유진호;천승환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.23-24
    • /
    • 2011
  • In this paper, the 170W LLC half bridge DC-DC converter is designed for the lighting management system. The power conversion circuit consists of PFC and isolated LLC resonant converter. The topology of LLC half bridge resonant converter provides ZVS characteristic. And the stresses of voltage and current is smaller than that of the general resonant converters. So we can expect the higher efficiency. The optimal conditions for high efficiency were investigated through by experiment.

  • PDF

개선된 전파형 ZVT-PWM DC-DC 컨버터 (Improved full wave mode ZVT-PWM DC-DC Converters)

  • 김태우;강안종;진기호;김학성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.777-780
    • /
    • 2003
  • In this paper, an improved full wave mode ZVT-PWM DC-DC Converter is presented to maximize the regeneration ratio of resonant energy by only putting an additional diode in series with auxiliary switch. The operation of auxiliary switch in a half wave mode makes possible the soft switching condition of all switches. Furthermore, the increase of the regeneration ratio to resonant energy results in low conduction losses and minimum voltage and current stresses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed full wave mode ZVT-PWM converters

  • PDF

무손실 스너버 커패시터에 의한 고효율의 DC-DC 컨버터 (DC-DC Converter of High Efficiency by using Loss-less Snubber Capacitor)

  • 곽동걸;이봉섭;김춘삼;심재선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1049-1050
    • /
    • 2006
  • This paper is proposed to a novel DC-DC converter operated high efficiency for loss-less snubber capacitor. The general converters of high efficiency is made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter is constructed by using a loss-less snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

인버터용 고주파 변압기의 효율 향상을 위한 코어 형상 최적화 설계에 대한 연구 (A Study on Core shape optimization to Improve The Efficiency of High Frequency Transformer for Inverter)

  • 유진형;정태욱
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.29-35
    • /
    • 2014
  • The purpose of high frequency transformer in the inverter is to reduce the voltage and current stresses of switch components when it operates at the large conversion ratio. But the loss of transformer is the major contributor in the efficiency of inverter. This paper presents the method of core design to minimize the loss of transformer. The total loss of transformer is minimized by adjusting the effective cross-sectional areas of core. The component ratio of losses are compared by using the finite-element analysis.

도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구 (A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses)

  • 이요섭;이원석;이성백
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF

High-Efficiency Supercapacitor Charger Using an Improved Two-Switch Forward Converter

  • Choi, Woo-Young;Yang, Min-Kwon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2014
  • This paper proposes a high-efficiency supercapacitor charger. Conventional two-switch forward converter can be used for charging supercapacitors. However, the efficiency of conventional converters is low because of their switching losses. This study presents a high-efficiency two-switch forward converter for supercapacitor chargers. The proposed converter improves power efficiency by 4 %, from 89 % to 93 %. The proposed converter has the advantages of reduced switch voltage stresses and minimized circulating current when compared to other converter topologies. The performance of the proposed converter is evaluated by experimental results using a 300 W prototype circuit for a 54-V, 35-F supercapacitor bank.

부분공진 기법이 적용된 ZVCS DC-DC 초퍼에 관한 연구 (A Study on ZVCS DC-DC Chopper by using Partial Resonant Method)

  • 곽동걸
    • 마이크로전자및패키징학회지
    • /
    • 제15권1호
    • /
    • pp.59-64
    • /
    • 2008
  • 최근 DC-DC 초퍼의 소형경량화 및 저소음화를 위해서 초퍼에 사용한 전력용 반도체 스위치의 스위칭 주파수를 증대시키고 있다. 이에 따른 스위칭 손실의 증대는 초퍼의 효율을 상당히 감소시키는 요인으로 주어진다. 이를 해결하기 위해 본 논문에서는 초퍼에 사용한 반도체 스위치의 턴-온, 턴-오프를 소프트 스위칭(영전류 또는 영전압 스위칭)으로 동작시켜 스위칭 손실을 최소화하는 새로운 고효율의 DC-DC 초퍼를 제안한다. 제안한 초퍼의 소프트 스위칭 동작은 스위치의 동작 시점에 부분공진 회로가 형성되어 인덕터의 전류와 커패시터의 전압이 영으로 될 때 스위치를 동작시키는 부분공진 기법이 적용된다. 또한 제안한 초퍼에 적용된 부분공진 회로는 승압용으로 사용한 인덕터와 스너버 커패시터에 의해 설계되어 초퍼의 회로 토폴로지가 간단하다. 컴퓨터 시뮬레이션과 실험결과를 통해 제안한 DC-DC 초퍼의 타당성이 입증된다.

  • PDF

새로운 DCM-ZVS DC-DC 컨버터에 관한 연구 (A Study on New DCM-ZVS DC-DC Converter)

  • 곽동걸;심재선
    • 전기전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.131-137
    • /
    • 2012
  • 본 논문에서는 영전압 스위칭(ZVS)과 전류불연속 모드(DCM)에 의한 새로운 고효율의 DC-DC 컨버터에 대해 연구된다. 일반적으로 고효율의 컨버터를 만들기 위해서는 전력변환기내에 사용된 반도체 스위칭 소자의 손실을 최소화하여 이루어진다. 제안한 컨버터는 DCM에 의하여 스위치의 턴-온 동작을 영전류 스위칭(ZCS)으로 만들고, 또한 새로운 유사공진 회로를 접목하여 컨버터의 고효율을 실현시킨다. 제안한 컨버터에 사용된 제어용 스위칭 소자들은 유사공진 기법에 의해 소프트 스위칭, 즉 ZVS와 ZCS으로 동작시키고, 이에 따른 제어용 스위칭 소자들은 전압과 전류의 스트레스 없이 동작한다. 그 결과 제안한 컨버터는 스위칭 손실의 저감에 의해 고효율로 구동된다. 제안한 DCM-ZVS 컨버터의 소프트 스위칭 동작과 시스템 효율은 디지털 시뮬레이션과 실험결과를 통해 그 타당성이 입증된다.

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.