• Title/Summary/Keyword: volcanic activities

Search Result 120, Processing Time 0.018 seconds

Developing Interactive Simulator for Predicting Volcanic Ash (실시간 대화형 화산재 확산 예측 시스템 개발)

  • Kim, Hae-Dong;Lee, Ho-Man
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.527-532
    • /
    • 2014
  • According to the analysis of volcanic observation data around Korean peninsula, the activities of volcano increase continuously. For example, the volcanic eruption of Mt. Sakurajima is an example, and Mt. Baekdu can be another example potentially. In these regards, developing unified system including realtime prediction and 3D visualization of volcano ash are important to prepare the volcanic disaster systematically. In this technical report, an interactive simulator embedding dispersion algorithm and 3D visualization engine is developed. This system can contribute to the realtime prediction of volcanic disaster scientifically.

Control of Manganese Nodule Characteristics by Volcanic Activity in the NE Equatorial Pacific (북동 태평양 KR1 광구의 망간단괴 산출특성)

  • Kim, Wonnyon;Yang, Seung Jin;Chi, Sang-Bum;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.373-381
    • /
    • 2014
  • Korea contract Mn-nodule field in the NE equatorial Pacific is composed of seven sectors with average water depths of 4,513-5,025 m. Of the various factors controlling the properties of Mn-nodule, it seems that water depth is likely connected to the chemical composition and occurrence of nodules. To test whether such an assumption held in each sector, we reviewed previous research data accumulated since 1994 for one of the northern sectors (hereafter KR1) where there are stark contrasts in water depth. High-resolution seabed mapping clearly separates a northern part (KR1N) from a deeper southern part (KR1S), cutting across in the middle of the KR1. In addition, significant volcanic activities forming numerous seamounts are distinctive especially in KR1N. In terms of nodule occurrence, manganese nodules in KR1S are comparatively larger (2-4 cm) with a discoidal shape, while those in KR1N are generally small (<2 cm) with poly-lobate and irregular shapes. Nodules in KR1N also have lower Co, Cu, Mn and Ni, and higher Fe contents. The spatial separation in nodule characteristics might be caused by volcanic activities in KR1N rather than water depth contrast. During the formation of the seamounts in KR1N, rock fragments and volcanic ashes as new nuclei of the nodules would have been continuously generated. As a result, the nodules could not grow larger than 2 cm and display the shapes of a newbie (i.e., irregular and poly-lobate shapes). Moreover, significant Fe supply from volcanic activities probably decreases the Mn/Fe ratio, which may lead to the KR1 nodules being misinterpreted as a hydrogenic in origin compared to other sectors where a high Mn/Fe ratio is present.

Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas (현풍-부곡일원 최하부 유천층군의 산상과 SHRIMP U-Pb 연대)

  • Ghim, Yong Sik;Ko, Kyoungtae;Lee, Byung Choon
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.397-411
    • /
    • 2020
  • The Cretaceous Yucheon Group is volcano-sedimentary successions that are formed by volcanic activities of the Gyeongsang Volcanic Arc. Lack of the detailed field researches on the Yucheon Group results in poor understanding of the formation time and the tempo-spatial development of the volcanic arc. Also, this causes difficulties to reconstruct the depositional history from the Sindong and Hayang groups to the Yucheon Group. In this study, we conducted field research targeting to the interface between topmost part of the Hayang Group and the lowermost part of the Yucheon Group from Hyeonpoong to Bugok areas. We also identified depositional timing of the lowermost part of the Yucheon Group using SHRIMP U-Pb zircon age dating. This Yucheon Group is composed of tuff and lapilli tuff, conformably overlying the Jindong Formation. The results of SHRIMP U-Pb zircon age are 97 to 96 Ma, indicating cessation of deposition of the Hayang Group at 97 to 96 Ma by input of pyroclastic materials into the Jinju Subbasin during the explosive volcanic eruptions from the Gyeongsang Volcanic Arc. In comparison with field researches and results of LA-ICP-MS zircon U-Pb age dating (88-85 Ma) of the lowermost part of the Yucheon Group in Gyeongju areas, the volcanic activities that formed Yucheon Group and their influence ranges varied tempo-spatially. This is probably due to distance difference from the volcanic arc or establishment of the paleo-drainage system from the Gyeongsang Volcanic Arc to nearby lowlands.

Anisotropy of Magnetic Susceptibility of Cretaceous Volcanic Rocks in Euiseong Area (의성지역에 분포하는 백악기 화산암류에 대한 대자율 이방성연구)

  • Suk, Dongwoo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 1994
  • Euiseong sub-basin, one of three sub-basins in Kyungsang basin, consists of various sedimentary and igneous rocks of Cretaceous age. Kusandong tuff and Yucheon volcanic rocks from the sub-basin were collected for the anisotropy of magnetic susceptibility (AMS) study. Maximum directions of the AMS for Kusandong tuff and Yucheon volcanic rocks are used to detect possible source areas. Although the dispersion of the maximum directions of the AMS, mainly due to low susceptibility and/or low percent anisotropy of individual specimens, is rather large, it is possible to reveal several source areas for the volcanic rocks. Areas near the Keumseongsan and Hwasan, calderas in the study area, are identified as source areas for Yucheon volcanic rocks, while the western part of Sunamsan, another collapsed caldera in Euiseong sub-basin, is inferred to be the source area for Kusandong tuff. However, it is not possible to determine detailed source areas for groups of Yucheon volcanic rocks of different lithologies, because of poor degree of convergence of the maximum directions of the AMS results from the volcanic rocks. It is also concluded that several episodic volcanic activities centered at Keumseongsan and Hwasan calderas were responsible for the formation of Yucheon volcanic rocks in Euseong area.

  • PDF

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh Sik;Park Cha-Hong;Yoo Hai-Soo;Han Sang-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.145-150
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction (toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age, After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh, Sik;Park, Chan-Hong;Yoo, Hai-Soo;Han, Sang-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.131-135
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction(toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age. After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Case Studies of Predicting Volcanic Ash by Interactive Realtime Simulator (실시간 대화형 화산재 확산 예측 시스템에 의한 화산재 확산 예측)

  • Kim, Hae-Dong;Lee, Jun-Hee
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2121-2127
    • /
    • 2014
  • Analyzing the observational data of volcanic activities around the northern part of Korean peninsula, the odds of volcano eruption increases continuously. For example, the cumulative seismic moment and frequence observed near Mt. Baekdu show a sudden increased values. In this study, predicting the diffusion of volcanic ash for two cases were carried out by using interactive realtime simulator, which was developed during last 2 years as a research and development project. The first case is Sakurajima volcano (VEI=3) erupted in August 2013. The second case is assumed as the volcanic eruption at Mt. Baekdu (VEI=7) under landing circumstance of typhoon Maemi (August 2003) in Korean peninsula. The synoptic condition and ash diffusion for the two cases were simulated by WRF(Weather Research and Forecast) model and Lagrangian dispersion model, respectively. Comparing the simulated result of the first case (i.e., Sakurajima volcano) with satellite image, the diffusion pattern show acceptable result. The interactive realtime simulator can be available to support decision making under volcanic disaster around East Asia by predicting several days of ash dispersion within several minutes with ordinary desktop personal computer.

A Preliminary Study on Calculating Eruptive Volumes of Monogenetic Volcanoes and Volcanic Hazard Evaluation in Jeju Island (제주도 단성화산의 분화량 계산과 화산재해 평가에 대한 예비연구)

  • Ko, Bokyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Eruptive volumes of three monogenetic volcanoes (Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone) with the youngest eruption age are calculated using the model, applied to Auckland Volcanic Field in New Zealand, to investigate the volcanic eruption scale and to evaluate volcanic hazard of Jeju Island. Calculated eruptive volumes of the volcanoes are $24,987,557m^3$, $9,652,025m^3$, and $11,911,534m^3$, respectively, and the volumes include crater infill, tuff ring (tuff cone), scoria cone, and lava flow. Volcanic explosivity indices of Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone are estimated based on the eruptive volumes to be 3, 2, and 3 respectively, and eruption type is Strombolian to Surtseyan. It is assumed that the amount of emitted sulfur dioxide gas is $2-8{\times}10^3kt/y$ according to the correlation between volcanic explosivity index and volcanic sulfur dioxide index. Recent age dating researches reveal evidences of several volcanic activities during the last 10,000 years indicating the possible volcanic eruption in Jeju Island in the near future. Therefore, it is necessary for appropriate researches regarding volcanic eruption of the island to be accomplished. In addition, establishment of the evaluation and preparation system for volcanic hazard based on the researches is required.

Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile

  • Kim, Jeong-Cheol;Kim, Dae-Hyun;Park, Sung-Hwan;Jung, Hyung-Sup;Shin, Han-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.341-350
    • /
    • 2014
  • Landsat images can monitor the snow-covered Earth surface variations with the ground resolution of 30m and the multi-spectral bands in the visible, NIR, SWIR and TIR spectral regions for the last 30 years. The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Snow cover area in southern province of the SVZ of Chile (37 to $46^{\circ}S$) have been influenced by significant frontal retreats as well as eruptive activities. In this study, we have investigated the changes of the snow-cover area and snow-line elevation at Mt. Villarrica and Mt. Llaima, Chile from three Landsat images acquired on Feb. 1990, 2005 and 2011. The snow-cover areas are 13.42, 26.75 and $21.60km^2$ at Mt. Villarrica in 1990, 2005 and 2011, respectively, and 3.82, 25.12 and $8.89km^2$ at Mt. Llaima in 1990, 2005 and 2011, respectively. The snow-line elevations are 1871, 1738 and 1826m at Mt. Villarrica in 1990, 2005 and 2011, respectively, and 2007, 1822 and 1818m at Mt. Llaima in 1990, 2005 and 2011, respectively. The results indicate that both of the snow-cover and snow-line changes are strongly related with the volcanic activity change. The results demonstrate that the snow-cover area and snow-line elevation changes can be used as an indicator of the volcanic activity at Mt. Villarrica and Mt. Llaima, Chile.

Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소)

  • Kim, Kyu Han;Tanaka, Tsuyoshi;Nagao, Keisuke
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF