• Title/Summary/Keyword: volatile organic compounds exposure

Search Result 140, Processing Time 0.028 seconds

Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers

  • Kim, Nam-Sun;Jung, Mi-Jin;Yoo, Zoo-Won;Lee, Sun-Neo;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1996-2000
    • /
    • 2005
  • Headspace hanging drop liquid phase micro-extraction (HS-HD-LPME) is studied as a novel solvent-based sample pretreatment method for floral volatile aroma compounds. This paper reports on application of the HSHD- LPME combined with GC-MS for the analysis of linalool component emitted from evening primrose flowers. The effect of several variables on the method performance was investigated. Additionally, the separation of enantiomers on a cyclodextrin capillary column was performed to identify chirality of (−)-linalool component. Since the unsurpassed volume of a few micro-liters of solvent is used, there is minimal waste or exposure to toxic organic solvents. This method enables to combine extraction, enrichment, clean-up, and sample introduction into a single step prior to the chromatographic process.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Evaluation on Probability and Intensity of Hazards Exposure by Construction Occupations (건설업 직종별 노출 가능 유해인자 및 노출강도에 관한 평가)

  • Hyunhee Park;Sedong Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.317-331
    • /
    • 2023
  • Objectives: Construction workers are exposed to various hazardous substances simultaneously. However, little is known about the exposure hazards in construction industry. This study was aimed at identifying the risk of exposure hazards among construction workers. Methods: The expert survey (n=29) was conducted, including construction industry health managers (n=11) and work environment monitoring experts (n=18), on exposure probability, intensity and risk of hazardous substances by construction occupations Results: The exposure hazards of 30 construction occupations were identified and summarized through a literature review and expert survey. The most prevalent hazards were in order of noise, awkward posture, heat/cold, crystalline silica, cement/concrete dust, metal fumes, and volatile organic compounds. The hazards with highest risk score(over seven points) at construction occupations were noise(formwork carpenter, concrete finisher, rebar worker, demolition worker, driller/rock blaster), hazardous rays(welder), heat/cold (earthworks, formwork carpenter, rebar worker, concrete placer, scaffolder), awkward posture(bricklayer, caulker/tile setter, rebar worker) and heavy lifting(bricklayer, rebar worker). Among construction workers, the job types with the highest risk of exposure to carcinogens, and in which occupational cancer has been reported, were in order of stonemason, concrete finisher, rock blaster, welder, insulation installer, painter, scaffolder, plant worker and earthworks in order Conclusions: Systematic research and discussion on occupational disease among construction workers and its various hazardous factors are needed to establish job exposure matrix for facilitating standard for promptly processing the workers' compensation.

In-Vehicle Levels of Naphthalene and Monocyclic Aromatic Compounds According to Vehicle Type

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2009
  • Only limited information is available as regards to the exposure levels of naphthalene (polycyclic aromatic hydrocarbons, PAHs) and monocyclic aromatic hydrocarbons(MAHs) in the interiors of diesel-fueled passenger cars, while many studies investigated the exposure levels of various volatile organic compounds(VOCs) in the interiors of gasoline-fueled passenger cars or public buses. Present study was performed to supplement this deficiency by measuring naphthalene (as a representative of PAHs) and MAHs levels inside five diesel-fueled and five gasoline-fueled passenger cars while morning and evening commuting on real roadways. Each car was surveyed five times on different sampling days. The in-vehicle naphthalene levels were higher for the diesel-fueled cars as compared to gasoline-fueled cars, whereas the results were reversed for the in-vehicle MAH levels. The median cabin levels of diesel-fueled cars were 1.3, 7, 13, 4, and 6 ${\mu}g/m^3$ for naphthalene, benzene, toluene, ethyl benzene, and m,pxylene, respectively. With respect to gasoline-fueled cars, their respective levels were 0.7, 11, 21, 7, and 9 ${\mu}g/m^3$ . The median MAHs concentration ratios of gasoline-fueled cars to diesel-fueled cars ranged from 1.50 to 1.75, while the median naphthalene concentration ratio was estimated to be 0.54. In addition, there was no significant difference of both naphthalene and MAHs between the diesel-fueled cars, but the in-vehicle levels were significantly different between gasoline-fueled cars. The concentration levels of both naphthalene and MAHs were higher in the passenger cars than other non-industrial microenvironments. Consequently, it was confirmed that the cabins of both diesel-fueled and gasoline-fueled passenger cars are an important microenvironment associated with the exposure to naphthalene and MAHs.

Indoor exposure to hazardous air pollutants and volatile organic compounds in low-income houses in Lagos, Nigeria

  • Luqmon, Azeez;Musa, Olaogun;Mariam, Adeoye;Abdulazeez, Lawal;Babatunde, Agbaogun;Ibrahim, Abdulsalami;Adija, Majolagbe
    • Advances in environmental research
    • /
    • v.1 no.4
    • /
    • pp.277-288
    • /
    • 2012
  • This study investigated exposure to air pollutants in rooms in low-income houses at Shomolu (R1), Mafoluku (R2) and Mushin (R3) in Lagos state. The concentrations of most measured exceeded limits of Illinois Department of Public Health (IDPH) for indoor air quality. Air quality index (AQI) in rooms studied was unhealthy for sensitive people in terms of CO, unhealthy in terms of $SO_2$ and very unhealthy in terms of $NO_2$ while moderate air quality was obtained in terms of $PM_{10}$ in most rooms. High concentrations of carbontetrachloride, formaldehyde and xylene measured could have been responsible for some of the health complaints of the occupants. Factor analysis shows that cooking with kerosene, use of gasoline generator and insecticide were the major contributors to indoor air pollution in these rooms. Therefore, there is need to urgently tackle poverty as all affected by these pollutants were poor who live in substandard houses without kitchens.

Evaluation of Volatile Organic Compounds Levels in Industrial Complex and Nearby Residential Areas of Daegu (대구지역 공단과 인근 주거지역의 휘발성유기화합물질 오염도 평가)

  • Jo, Wan Geun;Lee, Jin U
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.519-525
    • /
    • 2004
  • Air pollution from the Daegu industrial complex (Die) in Korea has been a common nuisance and cause of complaints for nearby residents. The current study measured the indoor and outdoor levels of six VOC (benzene, toluene, ethylbenzene, and three isomeric xylenes) at two residential areas with a different proximity to the ODIC, plus the ambient levels at two industrial areas within the boundary of the DDIC. The QA/QC program included the range of correlation coefficient (0.94-0.99) for calibration curves, within the permissible range. Toluene was the most abundant VOC in the ambient air both in residential and industrial areas. Both indoor and outdoor air concentrations of all target VOC except benzene were higher in residential area near the DIC compared to that further away from the DIC. Moreover, the ambient air concentrations of all target VOC except benzene for two industrial sites (A and B) were significantly higher than the outdoor or indoor air concentrations in the two residential areas. The findings further suggested that VOC ambient levels measured in a residential area near the DIC be used as a potential indicator of odor-causing unidentified air pollutants transported from the DIC. Moreover, it was found that the elevated ambient toluene levels outweighed the indoor sources with respect to the environmental exposure of residents nearby the DIC. However, in the residential area further away from the DIC, the toluene indoor sources outweighed the outdoor sources.

Exposure Possibility to By-products during the Processes of Semiconductor Manufacture (반도체 제조 공정에서 발생 가능한 부산물)

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hae-Dong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • Objectives: The purpose of this study was to evaluate the exposure possibility of by-products during the semiconductor manufacturing processes. Methods: The authors investigated types of chemicals generated during semiconductor manufacturing processes by the qualitative experiment on generation of by-products at the laboratory and a literature survey. Results: By-products due to decomposition of photoresist by UV-light during the photo-lithography process, ionization of arsine during the ion implant process, and inter-reactions of chemicals used at diffusion and deposition processes can be generated in wafer fabrication line. Volatile organic compounds (VOCs) such as benzene and formaldehyde can be generated during the mold process due to decomposition of epoxy molding compound and mold cleaner in semiconductor chip assembly line. Conclusions: Various types of by-products can be generated during the semiconductor manufacturing processes. Therefore, by-products carcinogen such as benzene, formaldehyde, and arsenic as well as chemical substances used during the semiconductor manufacturing processes should be controlled carefully.

Analysis of Flavor Composition of Coriander Seeds by Headspace Mulberry Paper Bag Micro-Solid Phase Extraction

  • Cha, Eun-Ju;Won, Mi-Mi;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2675-2679
    • /
    • 2009
  • This paper reports the example of headspace mulberry paper bag micro solid phase extraction (HS-MPB-$\mu$-SPE) as a new sampling method for the determination of volatile flavor composition of coriander seeds. Adsorption efficiencies between two configurations of mulberry paper bag were compared, and several parameters affecting the HS-MPB-$\mu$-SPE were investigated and optimized. The optimized technique uses an adsorbent (Tenax TA, 0.1 mg) contained in a mulberry paper bag of front configuration where fine surface was outside, and minimal amount of organic solvent (0.6 mL). Linalool and $\gamma$-terpinene were found as abundant flavor compounds from coriander seeds. The limit of detection (LOD) and the limit of quantitation (LOQ) for linalool of major flavor in coriander seeds were 10.3 ng/mL and 34.4 ng/mL, respectively. The proposed method showed good reproducibility and good recovery. The HS-MPB-$\mu$-SPE is very simple to use, inexpensive, requires small sample amounts and solvent consumption. Because the solvent for extraction is reduced to only a very small volume, there is minimal waste or exposure to toxic organic solvent and no further concentration step.

Indoor Air Quality of Laboratories in K- University and the Management Strategy (K대학교 실험실의 실내공기질 실태 및 관리방안)

  • Lee, Dong-Hyun;Jeong, Hyo-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.323-330
    • /
    • 2012
  • The purpose of this study was to examine the occurrence level of harmful chemical substance and the riskiness caused by it at university laboratory, which had been faintly interested in safe health management. It measured and analyzed indoor pollutants by academic department targeting K university where is located in Seoul Metropolis for 6 days starting from May 26, 2010. As a result, the appearance of being furnished with MSDS, the appearance of installing the exposure-reduction facilities, and the present status of supplying protective equipment in order to grasp the present status of managing harmful chemical substance at university laboratory were relatively good in management at the Dept. of Chemistry, the Dept. of Physics, and the Dept. of Medical Science, which are basic science laboratories. The activity for managing harmful chemical substance in the Dept. of Dental Medicine and the Dept. of Fine Arts was surveyed to be insufficient. Also, the concentration of formaldehyde and TVOCs(total volatile organic compounds) inside laboratory was detected noticeably highly in the Dept. of Fine Arts compared to other laboratories. The concentration of formaldehyde in a group, which was collectivized by similar academic department, was indicated to be higher in other academic departments including the Dept. of Fine Arts and the Dept. of Life Science, thereby having shown significant difference. The concentration of formaldehyde and TVOCs showed significant difference at the laboratory without installation compared to the laboratory with installation of fume hood. Seeing the above results, it could be known that a whole drop in recognition on influence of chemical upon health leads to being able to increase occurrence level of hazardous factor due to being insufficient in activity of protecting exposure to chemical substance.

Characterization of Secondary Exposure to Chemicals and Indoor Air Quality in Fire Station (소방서 실내공간의 화학적 유해인자 2차노출과 실내공기질 특성)

  • Kim, Soo Jin;Ham, Seunghon;Jeon, Jeong Seok;Kim, Won
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.140-151
    • /
    • 2019
  • It is to assess the indoor air quality of the chemical hazardous materials exposed to the fire after firefighters returned to the fire scene. The research subject randomly selected four fire stations located in Seoul, Korea. Two fire stations were set up as control groups after the return of the firefighting activities at the actual fire scene, and two other fire stations were set up as control groups to measure the air quality of the room at normal levels regardless of the action. We conducted 24-hour monitoring for all fire accidents that occurred in Seoul Metropolitan using fire safety map computer system. Also, indoor air quality was measured immediately after homecoming if the experiment group was to be dispatched due to an accident of intermediate or larger scale. 11 hazardous substance items such as fine dust, formaldehyde, volatile organic compounds, PAH, VCM, acidity, asbestos, CO2, NO2, O3 were measured according to the process test method. Three of 11 types of harmful substances exceeded domestic and foreign standards, and one of them was found to be close to foreign standards. In particular, total volatile organic compounds, carbon dioxide and sulfuric acids were 2.5 times, 2.2 times and 1.1 times higher than the standard. Also, for formaldehyde and sulfuric acid, it was measured higher in the control group than in the case group. This findings could be used in policies to improve indoor air quality in the fire station of the Seoul Metropolitan Government.