• Title/Summary/Keyword: vocabulary search

Search Result 75, Processing Time 0.023 seconds

Vocabulary Recognition Retrieval Optimized System using MLHF Model (MLHF 모델을 적용한 어휘 인식 탐색 최적화 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.217-223
    • /
    • 2009
  • Vocabulary recognition system of Mobile terminal is executed statistical method for vocabulary recognition and used statistical grammar recognition system using N-gram. If limit arithmetic processing capacity in memory of vocabulary to grow then vocabulary recognition algorithm complicated and need a large scale search space and many processing time on account of impossible to process. This study suggest vocabulary recognition optimize using MLHF System. MLHF separate acoustic search and lexical search system using FLaVoR. Acoustic search feature vector of speech signal extract using HMM, lexical search recognition execution using Levenshtein distance algorithm. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%, represent recognition speed of 1.61 second.

Subject Searching Using Controlled Vocabulary Versus Uncontrolled Vocaburary in Online Catalog System: Focusing on Multilingual Environment

  • Choi, Hee-Yoon
    • Journal of Information Management
    • /
    • v.26 no.2
    • /
    • pp.61-79
    • /
    • 1995
  • The purpose of this paper is to investigate search efficiency of controlled vocabulary versus uncontrolled vocabulary subject access in online catalog systems. The question of the effectiveness of controlled versus uncontrolled vocabulary in information retrieval has been raised in many literatures. A debate continues in the Library and Information Science Professions over the relative merit, appropriateness, and efficiency of uncontrolled vocabulary subject access in online catalog systems. Actually users used to combine uncontrolled vocabulary subject searching with controlled vocabulary subject searching. But the success of user's subject search depends on his choice of search terms. Also the technical developments that facilitate cooperation among information services in general make it increasingly possible for such cooperation to take place on an international level. In this study, several common types of vocabularies on online catalog systems are described and compared, especially usages of vocabularies in multilingual environment are analyzed.

  • PDF

The Vocabulary Recognition Optimize using Acoustic and Lexical Search (음향학적 및 언어적 탐색을 이용한 어휘 인식 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.496-503
    • /
    • 2010
  • Speech recognition system is developed of standalone, In case of a mobile terminal using that low recognition rate represent because of limitation of memory size and audio compression. This study suggest vocabulary recognition highest performance improvement system for separate acoustic search and lexical search. Acoustic search is carry out in mobile terminal, lexical search is carry out in server processing system. feature vector of speech signal extract using GMM a phoneme execution, recognition a phoneme list transmission server using Lexical Tree Search algorithm lexical search recognition execution. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.71%, represent recognition speed of 1.58 second.

Vocabulary Recognition Performance Improvement using k-means Algorithm for GMM Support (GMM 지원을 위해 k-means 알고리즘을 이용한 어휘 인식 성능 개선)

  • Lee, Jong-Sub
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • General CHMM vocabulary recognition system is model observation probability for vocabulary recognition of recognition rate's low. Used as the limiting unit is applied only to some problem in the phoneme model. Also, they have a problem that does not conform to the needs of the search range to meaning of the words in the vocabulary. Performs a phoneme recognition using GMM to improve these problems. We solve the problem according to the limited search words characterized by an improved k-means algorithm. Measure the effectiveness represented by the accuracy and reproducibility as compared to conventional system performance experiments. Performance test results accuracy is 83%p, and recall is 67%p.

Vocabulary Coverage Improvement for Embedded Continuous Speech Recognition Using Knowledgebase (지식베이스를 이용한 임베디드용 연속음성인식의 어휘 적용률 개선)

  • Kim, Kwang-Ho;Lim, Min-Kyu;Kim, Ji-Hwan
    • MALSORI
    • /
    • v.68
    • /
    • pp.115-126
    • /
    • 2008
  • In this paper, we propose a vocabulary coverage improvement method for embedded continuous speech recognition (CSR) using knowledgebase. A vocabulary in CSR is normally derived from a word frequency list. Therefore, the vocabulary coverage is dependent on a corpus. In the previous research, we presented an improved way of vocabulary generation using part-of-speech (POS) tagged corpus. We analyzed all words paired with 101 among 152 POS tags and decided on a set of words which have to be included in vocabularies of any size. However, for the other 51 POS tags (e.g. nouns, verbs), the vocabulary inclusion of words paired with such POS tags are still based on word frequency counted on a corpus. In this paper, we propose a corpus independent word inclusion method for noun-, verb-, and named entity(NE)-related POS tags using knowledgebase. For noun-related POS tags, we generate synonym groups and analyze their relative importance using Google search. Then, we categorize verbs by lemma and analyze relative importance of each lemma from a pre-analyzed statistic for verbs. We determine the inclusion order of NEs through Google search. The proposed method shows better coverage for the test short message service (SMS) text corpus.

  • PDF

Efficient Vocabulary Optimization Management using VCOR (VCOR를 이용한 효율적인 어휘 최적화 관리)

  • Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1436-1443
    • /
    • 2010
  • In vocabulary recognition system has it's bad points of processing vocabulary unseen triphone and then no got distribution of confidence measure by cannot normalization. According to this problem to improve suggested VCOR(Version Control for Out-of Rejection) system by out-of vocabulary rejection algorithm use vocabulary management optimization and then phone data search support. In VCOR system to provide vocabulary information efficiently offering for user's vocabulary information using extend facet classification that improved for vocabulary measure management function offering accuracy of recognition for vocabulary. In this paper proposed system performance as a result of represent vocabulary dependence recognition rate of 97.56%, vocabulary independence recognition rate of 96.23%.

Design of a Korean Speech Recognition Platform (한국어 음성인식 플랫폼의 설계)

  • Kwon Oh-Wook;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.51
    • /
    • pp.151-165
    • /
    • 2004
  • For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.

  • PDF

Combining Faceted Classification and Concept Search: A Pilot Study

  • Yang, Kiduk
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.48 no.4
    • /
    • pp.5-23
    • /
    • 2014
  • This study reports the first step in the Classification-based Search and Knowledge Discovery (CSKD) project, which aims to combine information organization and retrieval approaches for building digital library applications. In this study, we explored the generation and application of a faceted vocabulary as a potential mechanism to enhance knowledge discovery. The faceted vocabulary construction process revealed some heuristics that can be refined in follow-up studies to further automate the creation of faceted classification structure, while our concept search application demonstrated the utility and potential of integrating classification-based approach with retrieval-based approach. Integration of text- and classification-based methods as outlined in this paper combines the strengths of two vastly different approaches to information discovery by constructing and utilizing a flexible information organization scheme from an existing classification structure.

Fast Decoder Algorithm Using Hybrid Beam Search and Variable Flooring for Large Vocabulary Speech Recognition (대용량 음성인식을 위한 하이브리드 빔 탐색 방법과 가변 플로링 기법을 이용한 고속 디코더 알고리듬 연구)

  • Kim, Yong-Min;Kim, Jin-Young;Kim, Dong-Hwa;Kwon, Oh-Il
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.17-33
    • /
    • 2001
  • In this paper, we implement the large variable vocabulary speech recognition system, which is characterized by no additional pre-training process and no limitation of recognized word list. We have designed the system in order to achieve the high recognition rate using the decision tree based state tying algorithm and in order to reduce the processing time using the gaussian selection based variable flooring algorithm, the limitation algorithm of the number of nodes and ENNS algorithm. The gaussian selection based variable flooring algorithm shows that it can reduce the total processing time by more than half of the recognition time, but it brings about the reduction of recognition rate. In other words, there is a trade off between the recognition rate and the processing time. The limitation algorithm of the number of nodes shows the best performance when the number of gaussian mixtures is a three. Both of the off-line and on-line experiments show the same performance. In our experiments, there are some differences of the recognition rate and the average recognition time according to the distinction of genders, speakers, and the number of vocabulary.

  • PDF

Intelligent Retrieval System with Interactive Voice Support (대화형 음성 지원을 통한 지능형 검색 시스템)

  • Moon, K.J.;Yoo, Y.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • In this paper, we propose a intelligent retrieval system with interactive voice support. The developed system helps to find misrecognized words by using the relationship between lexical items in a sentence recognition and present the correct vocabulary. In this study, we implement a simulation system that can be proposed to determine the usefulness of the product search assistance system which offers applications. Experimental results were confirmed to correct the wrong speech recognition vocabulary in a simple user interface to help the product search.

  • PDF