• Title/Summary/Keyword: vocabulary learning

Search Result 188, Processing Time 0.024 seconds

Verification of the Usefulness of the Mock TOEIC Test using Corpus Indices : Focusing on the Analysis of Difficulty and Discrimination (코퍼스 지표를 활용한 모의 토익시험의 유용성 검증 : 난이도와 변별도 분석을 중심으로)

  • Lee, Yena
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.576-593
    • /
    • 2021
  • In this study, in order to investigate the factors that affect the percentage of correct answers and the degree of discrimination of the TOEIC test, a regression analysis was performed using corpus indicators that influence correct answer rate and the degree of discrimination for each part derived from the item analysis. The basic calculation word_length, consistency index LSA_overlap_adjacent_sentences, lexical diversity MTLD_VOCD, conjunction All_logical_causal_connectives_incidence, situational model casual_particles_causal_verbs_Ratio, syntactic complexity Left_embeddedness, and syntactic pattern density Infinitive_density were found to have negative effects. These factors that lower the correct answer rate can be utilized when setting learning goals. Vocabulary diversity index MTLD_VOCD, conjunction Additive_connectives_incidence, syntactic pattern density Infinitive_density, and lexical information person1_2_pronoun_incidence were found to have a positive effect. Factors influencing the increase in discrimination may provide important information for developing a learning program.

Brutal sorigeuk of the use of educational view of (잔혹소리극 <내다리내놔>의 가치 교육적 활용에 대한 고찰)

  • Kim, Jeong Sun
    • (The) Research of the performance art and culture
    • /
    • no.32
    • /
    • pp.595-628
    • /
    • 2016
  • Pansori of a creative group pansori 2006 demonstration factory floor sound brutal sorigeuk the home of is a legend 'deokttaegol' in pansori, a creative for adaptation to remakes Work is. Evil Twin 'deokttaegol' called "Give me my leg back" in of Ghost Stories, broadcast on a kbs of lines from breakneck work is considered to be a pronoun. Sound and shadow play and playing drums and payments sentiments of the cruelty I've come across in this 'Give me my leg back' audience to be deployed to the cruel is formed by the center. Based on emotional horror of cruelty. When I was little, ever heard of Korean Ghost Stories, a bedrock of the main feeling revulsion of value in a short time and is contained in a story of filial piety, while in education, to the target Provided. Done in our lives using genre called 'pansori' sentiment and efficient learning can move about the value education can know. Sound and stories, many carefree a stimulus such as Pansori is a great gesture can be a means of education. Valued with any information, work is performed in pansori, depending upon efficient and the various, education and made an emotional cultivation resulting from the value. In my life friendly, our own via a variety of materials that can easily access many values and sentiments, and to culture for each age group on languages and customs Each age groups and instructive preferred allowing them access through their rhythm, pansori, access to the target is persistent about it with curiosity and interest. Can have interest. This wealth not belong to the traditional pansori and new together private and to the tune called creative work for the Pansori. Therefore, our language and customs, their poems span a friendly, the pansori and created using the vocabulary for each age group creative content is educational effects if used in education It is expected to be big thing. These effective approach for each age group and based on the vocabulary by the content easily understood lessons by causing only a smoothly acquired Can to provide an opportunity. Therefore, the Pansori of a creative education is important to take advantage of educational value.

COMPARISON OF KEDI-WISC AND BGT PERFORMANCE BETWEEN THE ASPERGER' DISORDER AND PDD NOS CHILDREN (아스퍼거장애와 비전형 자폐장애 아동의 KEDI-WISC와 BGT 수행의 비교)

  • Yang, Yoon-Ran;Shin, Min-Sup
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1998
  • Objectives:This study was conducted to compare the cognitive characteristics and visual-motor coordination ability of children with Asperger’s disorder and with those of children with PDD NOS. Methods:27 children(13 in AS group and 14 in PDD NOS group) were individually assessed using the K-WISC and BGT, and the results of those tests were analyzed. Results:The mean FSIQ of the AS group was significantly higher than that of the PDD NOS group. There was also a large discrepancy between VIQ and PIQ in the PDD NOS, while there was not significant discrepancy in the AS. The AS was distinguished from PDD NOS group by significantly higher scores in Vocabulary and Comprehension subscales and lower score in Block design. Also, when compared with the PDD NOS, the AS showed more difficulties in visual-motor coordination. Conclusion:The AS showed relatively good verbal and learning ability, while the PDD NOS relatively superior ability in visuospatial function and visual-motor coordination. The findings indicated that the K-WISC and BGT might be useful assessment tool to differentiate the AS from PDD NOS.

  • PDF

Analysis of North Korean Primary English Curriculum (북한의 소학교 영어과 교육과정 분석)

  • Kim, Jeong-ryeol
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.582-590
    • /
    • 2020
  • This paper aims to analyze and introduce the primary English curriculum of North Korea reformulated according to the New Educational Program. Sources for analysis are the 4th and 5th primary school English syllabus based on the New Educational Program, explanations of the New Educational Program appeared in People's Education and Kim, Jeong-Il's selected writings. The analytical sources are classified into characteristics, objectives, contents, methods and evaluation. The findings are as follows: The primary English education aims to reach to the basis of middle school English by learning English alphabets and basic English expressions. 4th graders learn basic oral English such as pronunciation, stress and intonation for the first semester and learn English alphabets and their sounds for the second semester. 5th graders learn familiar topics in English and repeatedly practice the important components of English such as pronunciation, vocabulary and grammar. The method is to maintain students' interests in English and encourage students to use classroom English. Also, structural practice is an important part of the method. Evaluation is primarily process-oriented and must motivate students to excel in English rather than fail in English.

The narrative inquiry on Korean Language Learners' Korean proficiency and Academic adjustment in College Life (학문 목적 한국어 학습자의 한국어 능력과 학업 적응에 관한 연구)

  • Cheong Yeun Sook
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.1
    • /
    • pp.57-83
    • /
    • 2024
  • This study aimed to investigate the impact of scores on the Test of Proficiency in Korean (TOPIK) among foreign exchange students on academic adaptation. Recruited students, approved by the Institutional Review Board (IRB), totaled seven, and their interview contents were analyzed using a comprehensive analysis procedure based on pragmatic eclecticism (Lee, Kim, 2014), utilizing six stages. As a result, factors influencing academic adaptation of Korean language learners for academic purposes were categorized into three dimensions: academic, daily life, and psychological-emotional aspects. On the academic front, interviewees pointed out difficulties in adapting to specialized terminology and studying in their majors, as well as experiencing significant challenges with Chinese characters and Sino-Korean words. Next, from a daily life perspective, even participants holding advanced TOPIK scores faced difficulties in adapting to university life, emphasizing the necessity of practical expressions and extensive vocabulary for proper adjustment to Korean life. Lastly, within the psychological-emotional dimension, despite being advanced TOPIK holders, they were found to experience considerable stress in conversations or presentations with Koreans. Their lack of knowledge in social-cultural and everyday life culture also led to linguistic errors and contributed to psychological-emotional difficulties, despite proficiency in Korean. Based on these narratives, the conclusion was reached that in order to promote the academic adaptation of Korean language learners, it is essential to provide opportunities for Korean language learning. With this goal in mind, efforts should be directed towards enhancing learners' academic proficiency in their majors, improving Korean language fluency, and fostering interpersonal relationships within the academic community. Furthermore, the researchers suggested as a solution to implement various extracurricular activities tailored for foreign learners.

A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM) (국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구)

  • Shin, Philip Wootaek;Lee, Jinhee;Kim, Jeongwoo;Shin, Dongsun;Lee, Youngsang;Hwang, Seung Ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.169-178
    • /
    • 2020
  • The reductions of troops/human resources, and improvement in combat power have made Korean Department of Defense actively adapt 4th Industrial Revolution technology (Artificial Intelligence, Big Data). The defense information system has been developed in various ways according to the task and the uniqueness of each military. In order to take full advantage of the 4th Industrial Revolution technology, it is necessary to improve the closed defense datamanagement system.However, the establishment and usage of data standards in all information systems for the utilization of defense big data and artificial intelligence has limitations due to security issues, business characteristics of each military, anddifficulty in standardizing large-scale systems. Based on the interworking requirements of each system, data sharing is limited through direct linkage through interoperability agreement between systems. In order to implement smart defense using the 4th Industrial Revolution technology, it is urgent to prepare a system that can share defense data and make good use of it. To technically support the defense, it is critical to develop Multi Repository Meta-Data Management (MRMM) that supports systematic standard management of defense data that manages enterprise standard and standard mapping for each system and promotes data interoperability through linkage between standards which obeys the Defense Interoperability Management Development Guidelines. We introduced MRMM, and implemented by using vocabulary similarity using machine learning and statistical approach. Based on MRMM, We expect to simplify the standardization integration of all military databases using artificial intelligence and bigdata. This will lead to huge reduction of defense budget while increasing combat power for implementing smart defense.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.