• Title/Summary/Keyword: vitronectin

Search Result 16, Processing Time 0.028 seconds

Effects of the Chestnut Inner Shell Extract on the Expression of Adhesion Molecules, Fibronectin and Vitronectin, of Skin Fibroblasts in Culture

  • Chi, Yeon-Sook;Heo, Moon-Young;Chung, Ji-Hun;Jo, Byoung-Kee;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.469-474
    • /
    • 2002
  • The inner shell of the chestnut (Castanea crenata S. et Z., Fagaceae) has been used as an anti-wrinkle/skin firming agent in East Asia, and preliminary experiments have found that a 70% ethanol extract from this plant material can prevent cell detachment of skin fibroblasts from culture plates. In order to examine the molecular mechanisms underlying this phenomenon, its effects on the expression of adhesion molecules, such as fibronectin and vitronectin, were investigated using the mouse skin fibroblast cell line, NIH/3T3. Using fixed-cell ELISA, Western blotting and immunofluorescence cell staining, it was clearly demonstrated that the chestnut inner shell extract enhanced the expression of the cell-associated fibronectin and vitronectin. Scoparone (6,7-dimethoxycoumarin), isolated from the extract, also possessed similar properties. These findings suggest that the enhanced expression of the adhesion molecules may be one of the molecular mechanisms for how the chestnut inner shell extract preventing cell detachment and may be also responsible for its anti-wrinkle/skin firming effect.

The Effect of Platelet-Rich Plasma on the Cellular Attachment of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포부착에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. This study is aimed to investigate the effect of platelet-rich plasma on the attachment of osteoblast. To evaluate the effect on human, human osteoblast cell line was cultured. Platelet-rich plasma was extracted from the blood of a healthy volunteer. The effect on the attachment was evaluated by MTT assay. To evaluate autocrine and paracrine effect on osteoblast, conditioned medium was made and compared with platelet-rich plasma. By western blot analysis, the expression of fibronectin and vitronectin in experimental groups was examined. The results were as following: The cellular attachment of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The amount of increasing was similar between two groups. The expression of fibronectin and vitronectin in platelet-rich plasma and conditioned medium is more than control group in western blot analysis. These findings imply that platelet-rich plasma enhance the cellular attachment by inducing fibronectin, vitronectin from osteoblast and maximize the cellular attachment by using the autocrine and paracrine effect of platelet-rich plasma.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells

  • Jeon, Byeong-Min;Yeon, Gyu-Bum;Goo, Hui-Gwan;Lee, Kyung Eun;Kim, Dae-Sung
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.135-147
    • /
    • 2020
  • Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.

THE EFFECT OF ADHESIVE GLYCOPROTEINS ON THE ATTACHMENT AND PROLIFERATION OF HUMAN PULPAL CELLS (부착단백질이 사람 치수세포의 부착 및 증식에 미치는 영향에 관한 연구)

  • Shin, Young-Joo;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.54-69
    • /
    • 1996
  • The purpose of this vitro study was to evaluate attachment and proliferation of human pulpal cells to the attachment glycoprotein-coated and non-coated culture dishes. Well known adhesive glycoproteins were used, such as type I collagen, type IV collagen, fibronectin, laminin, and vitronection. Each adhesive glycoproteins applied onto the culture dishes. In this study, the protein coated and non-coated dishes were classified as each groups. Human pulpal cells onto each culture dishes. After 90 minute, 4 hour and 24 hour incubation attached cells in each group were counted with hematocytometer for evaluation of the attachemnt of human pulpal cells. The configurations of attached human pulpal cells were done by SEM observation. The results as follows : 1. After 90 minute incubation the score of attachment of human pulpal cells was best in laminin-coated group among groups. Then fibronectin, type IV collagen group were better, and all proteins were higher than control. 2. After 4 hour incubation the numbers of attachment of human pulpal cells were most in fibronectin coated group. 3. After 24 hour incubation all of adhesive glycoproteins showed high and similar attachemtn effect to human pulpal cells. 4. In SEM observation, fibronectin and type IV collagen groups showed well spreaded human pulpal cells, then laminin group was moderately spreaded, and vitronectin group was mildly spreaded as well as control group.

  • PDF

Multi-functional Micro/Nano Printing Process with ElectroSpray Deposition(ESD) (ESD를 이용한 다기능 미세 프린팅 공정)

  • Kim D.S.;Lee W.H.;Lim H.E.;Park Y.D.;Lee K.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.597-598
    • /
    • 2006
  • In this study, we used the ESD method to prepare the protein microarrays for observation the stem cell responses to pattern size, space and shapes. The ESD method allows a reduction in spot size, high efficiency of substance transfer, and high rate in fabrication as a result of ability to simultaneously deposit thousands of identical spots. Typical electro spraying conditions for the deposition of proteins were a voltage of $3{\sim}5keV$ and the humidity under 30%. The patterns of masks have a variety of shapes, spaces, and hole sizes from 10 um to $300{\mu}m$. Three kinds of proteins(collagen, fibronectin, and vitronectin dissolved in PBS) are deposited in a dry state, preserving the functional activity of proteins. Stem cells were cultured on each protein patterned sample at $37^{\circ}C$ for 1day.

  • PDF

THE EFFECT OF ADHESIVE GLYCOPROTEIN ON THE ACTIVITY OF HUMAN PULP FIBROBLAST (교원질과 당단백이 치수섬유모세포에 미치는 효과에 관한 연구)

  • Kim, Ju-Yon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.546-558
    • /
    • 1996
  • The purpose of this vitro study was to evaluate the activity of human pulpal cells to adhesive glycoprotein-coated and non-coated culture dishes. Well known adhesive glycoproteins were used, such as type I collagen, type IV collagen, fibronectin, laminin, and vitronectin. Each adhesive glycoproteins applied onto the culture dishes. In this study, the protein coated and non-coated dishes were classified as each groups. Human pulpal cells cultured onto each groups. After 24 hours, 48 hours, 72 hours incubation time, radioactivity with scintillation counter for evaluation of the activity of human pulpal cells. The results as follows : 1. After 24 hours incubation time, activity of human pulpal cells were best in laminin-coated group among groups. Then fibronectin, type I collagen group were better, and all proteins were better than control. 2. After 48 hours incubation time, activity of human pulpal cells were best in fibronectin coated group. 3. After 72 hours incubation time, activity of human pulpal cells were not significantly different in all of adhesive glycoproteins. 4. After 24 hours incubation time, activity of human pulpal cells were best in fibronectin and laminin coated group. Activity of human pulpal cells in type I collagen coated group were better after 24 hours incubation time then 48 hours incubation time.

  • PDF