• Title, Summary, Keyword: vital gluten

Search Result 25, Processing Time 0.029 seconds

The Optimized Formulas of Rye Bread on the Sensory Properties using RSM (RSM을 적용한 관능 특성에 따른 Rye Bread의 최적 Formulas에 대한 연구)

  • Kwon Kyung-Soohn
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.278-285
    • /
    • 2004
  • The effects of water, rye flour and vital gluten on the sensory properties of bread were studied by response surface methodology and sensory evaluations. A response surface model was used to evaluate the effects observed and to determine the optimum variations for rye bread. The study included 12 combinations of the following independent variables: Water(57, 62, 67%), Rye flour(0, 10, 30, 50%), and Vital gluten(0, 1, 3, 5%). Bread quality attributes determined were specific volume, color, texture, appearance, taste, chewiness, moisture, overall. Rye bread specific volume, sensory evaluation values and Instrumental testing results were significantly affected by variety (water, rye flour and vital gluten). Rye bread with a high specific volume was produced using water 67%, rye flour 10% and vital gluten 3%. Whereas, rye breads with a high overall sensory evaluation were water 62 %, rye flour 10 % and vital gluten 5%. And Specific volume predicted and overall preference also was shown high. It was shown that the experimental design used provided information about the rye bread of variation of water, rye flour and vital gluten and can be a useful supplement to standardized and optimized formulas in rye bread making. The results suggest that water, rye flour, vital gluten can be combined in rye bread making at various levels, contributing to optimize the functional properties of rye bread. These result represents that breads loaf volume related to directly consumer preference.

Effect of Enzymatically Hydrolyzed Vital Wheat Gluten on Dough Mixing and the Baking Properties of Wheat Flour Frozen Dough

  • Song, Kyung-Ah;Koh, Bong-Kyung
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.173-176
    • /
    • 2006
  • The effect of enzymatically hydrolyzed vital wheat gluten (EHG) on dough mixing and the baking quality of wheat flour frozen dough was examined. Three different proteases, pepsin, trypsin, and chymotrypsin, were tested individually, sequentially paired, or in combination of all three enzymes. Addition of 1% EHG produced no observable effect on the mixing properties of wheat flour dough. However, addition of 2.5% pepsin-hydrolyzed gluten decreased the mixing tolerance of the wheat flour, and 1% trypsin-hydrolyzed gluten increased the loaf volume of both frozen and non-frozen dough. This finding suggests that trypsin-hydrolyzed vital wheat gluten may serve as a baking additive in replacement for $KBrO_3$ to improve frozen dough quality.

Vital Wheat Gluten by Hot Air Drying (Vital Wheat Gluten 의 제조)

  • Suh, Hong-Kyl
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1973
  • Dry vital wheat gluten was prepared by atmospheric hot air drying of wet gluten blended with salt and acid. Products of good quality were obtained over a wide range of conditions, as shown by dough expansion, nitrogen solubility, rehydration test, and easinass of smashing and drying after blending. Gluten of good quality was produced by atmospheric hot air drying at $60^{\circ}C$, after blending wet gluten with salt in the range of 5 to 10% and acid, preferably, hydrochloric, at 0.12%.

  • PDF

Effect of Vital Wheat Gluten on the Quality Characteristics of the Dough Frozen after 1st Fermentation (활성글루텐이 1차발효 후 냉동한 생지의 품질특성에 미치는 영향)

  • Choi, Doo-Ri;Lee, Jeong-Hoon;Yoon, Yoh-Chang;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Frozen dough made by sponge and dough method using sweet dough formula was quickly frozen at $-40^{\circ}C$ and stored for 8 weeks at $-20^{\circ}C$. Effects of vital wheat gluten on number of yeast cells, bread volume, specific loaf volume, hardness, and sensory properties of bread were investigated. Dough added with 4% vital wheat gluten showed higher yeast cell survival rate during freeze storage and larger specific loaf volume than other doughs. Hardness value increased with increasing amount of vital wheat gluten added, whereas, in frozen dough stored more than 4 weeks, dough added with 2% vital wheat gluten showed lower hardness value than others. Bread made with 4% vital wheat gluten showed highest sensory score.

Effect of Soybean Milk Residues Powder on the Quality of Dough (두유박 분말 첨가가 식빵 반죽에 미치는 영향)

  • Shin, Doo-Ho;Lee, Yeon-Wha
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.381-391
    • /
    • 2006
  • The rheological properties of dough made the substitution of wheat flour(composite flour) at the levels of 0%, 5%, 10% and 15% soymilk residue flour, with addition of vital wheat gluten at the levels of 3, 6 and 9% were investigated. And nutrition contents of soymilk residue flour were analyzed. The results were as follows; Principal components of soymilk residue flour were 22.0% crude protein, 13.2% crude lipid, 54.3% carbohydrate, 27.2% dietary fiber and $220{\mu}g/g$ isoflavones. Free amino acid component of soymilk residue were L-glutamic acid, L-leucine, L-lysine, L-valine, L-phenylalanine, L-isoleucine, L-threonine, L-methionine and L-cystine. Total dietary fiber content of bread with soymilk residue and wheat flour were 5% soymilk residue; 3.50%, 10% soymilk residues; 4.65%, 15% soymilk residues; 5.96%, and wheat flour bread: 2.1% respectively Mixing water absorption capacity was increased by increasing amounts of added soymilk residue and vital wheat gluten. Dough development time was increased by increasing amounts of added soymilk residues, while decreased by increasing amounts of vital wheat gluten. The dough volume of composite flour with 5%, 10% and 15% soymilk residue flour were the smaller than wheat flour dough. But the dough volume was increased by added vital wheat gluten, and the composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. This study proved that the dough volume of composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. On the other hand, the soymilk residue flour contains dietary fiber, isoflavone, protein, lipid and carbohydrate. Therefore the soymilk residue flour will be very useful as food material.

Combined Effects of Vital Gluten, Gum, Emulsifier, and Enzyme on the Properties of Rice Bread (활성글루텐, 검, 유화제 및 효소제의 복합첨가에 따른 쌀빵의 품질특성)

  • Kim, Kyung-Eun;Lee, Young-Tack
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.320-325
    • /
    • 2009
  • The effects of adding additives such as vital gluten, gum, emulsifier, and enzyme to rice flour on baking quality were examined. The effects of different gums on the pasting and dough properties of rice flour containing vital gluten were studied using a Rapid Visco Analyzer (RVA) and a Brabender farinograph. The RVA peak, breakdown, and final viscosities decreased with the addition of gums, while setback viscosity increased. The farinogram showed that rice flour supplemented with gums such as tara gum, guar gum, and locust bean gum (LBG) increased water absorption and dough stability, yielding strengthened dough similar to wheat flour dough. The addition of guar or tara gum/sodium stearoyl lactylate (SSL)/fungal $\alpha$-amylase (AMYL) or glucose oxidase (GO) blend improved the volume and reduced the crumb firmness of rice bread prepared from rice flour containing 14% vital gluten. Therefore, the combined addition of gum, emulsifier and enzyme into rice flour significantly improved the rice bread quality, allowing the decrease of the vital gluten level in rice bread formula.

Effects of Vital Wheat Gluten on Quality Characteristics of White Pan Bread Containing Resistant Starch (활성글루텐이 저항전분을 함유한 식빵의 품질 특성에 미치는 영향)

  • Kim, Yu-Jin;Lee, Jeong-Hoon;Choi, Mi-Jung;Choi, Doo-Ri;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • This study was carried out to evaluate the effect of wheat gluten on quality characteristics of white pan bread with 10% resistant starch. White pan bread was fortified with wheat gluten at levels of 2%, 4% and 6% w/w. The pH of dough and white pan bread, specific loaf volume, water activity, baking loss rate, crumb color, hardness, and sensory evaluation were analyzed for quality characteristics. The pH of processed dough and white pan bread with additional vital wheat gluten was lower than that of control, and pH increased with increasing wheat gluten content. Water activity was lower in white pan bread with added vital wheat gluten than in the control, however there were no significant differences. Specific loaf volume revealed a higher value in tests than in the control, and the products revealed a higher specific loaf volume with higher amounts of vital wheat gluten. However, the baking loss rate decreased with increasing wheat gluten content. In terms of crumb color analysis, L, a, and b values lowered with increasing wheat gluten. Hardness appeared to be lower in tests than in the control, and the test with 6% wheat gluten showed the lowest value among the products. In a sensory evaluation, the product with 4% wheat gluten revealed the highest score. As a result of this study, 4% wheat gluten is considered to be the reasonable level in preparing white pan bread with 10% resistant starch.

Development of Buckwheat Bread: 2, Effects of Vital Wheat Gluten and Water-Soluble Gums on Baking and Sensory Properties (메밀빵 제조: 2. 활성 글루텐과 수용성 gum물질이 메밀빵 특성에 미치는 효과)

  • 정지영;김창순
    • Korean journal of food and cookery science
    • /
    • v.14 no.2
    • /
    • pp.168-176
    • /
    • 1998
  • The breadmaking characteristics of composite flour containing 30% of buckwheat and 70% of wheat with the addition of vital wheat gluten and water-soluble gums, were studied to establish the optimum formula for the development of buckwheat bread. The addition of vital wheat gluten or/and gums led to successful formation of buckwheat bread, giving loaf volume increase and improvement of sensory quality, especially texture determined by QDA (Quantitative Descriptive Analysis). Among those additives, xanthan gum showed the best volume expansion. Synergistic effects on bread quality were observed when the vital wheat gluten and xanthan gum or guar gum were used together. As buckwheat flour was substituted for wheat flour, gelatinization started early and the maximum viscosity increased measured by an amylography. The addition of gluten and gums caused the initial gelatinization to occur at a higher temperature and maximum viscosity to decrease.

  • PDF

Effect of Storage on Physicochemical and Bread-making Properties of Bread Premix Prepared from Rice Flour Containing Vital Gluten (활성글루텐 첨가 쌀 식빵 프리믹스의 저장 중 품질 특성)

  • Lee, Young-Tack
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Rice bread premix was prepared from rice flour and vital wheat gluten, and the changes in the premix properties were studied during storage at 5, 25 and $35^{\circ}C$ for 4 months. Optimum level of 14-17% vital gluten could be added to the rice bread premix. The pH, sedimentation value, and Pelshenke value of the rice bread premix decreased with increasing storage period, whereas water retention capacity (WRC) and alkaline water retention capacity (AWRC) increased with increasing storage temperature. Mixograph peak time increased with increasing storage temperature. Rapid Visco Analyser (RVA) peak viscosity and setback values increased with increasing storage temperature and period. Decreased loaf volume was observed at the rice bread prepared from the premix during storage, especially at higher temperatures. Crumb hardness of the rice bread prepared from the premix increased during 4-month storage period.

Ootimization of Mekium Components for Lactic Acid Production (젖산 생산을 위한 배지 최적화)

  • Cho, Yun-Kyung;Cho, Kyu-Hong;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.12-16
    • /
    • 1995
  • Medium components for lactic acid production were optimized with a strain of Lactobacillus sp., isolated by our Lab. Nitrogen source was the key component and manganese ion was also important for lactic acid production in this strain. Optimal concentration of manganese ion was 0.03 g/l as MnSO$_{4}$ 4 - 5 H$_{2}$O base. Other mineral elements, however, had little effect on it. Among the nitrogen sources we examined, yeast extract showed the highest productivity. Yeast extract, the exellent but very expensive medium component, could be partially replaced by soytone until 60% dry base with higher productivity, or by tryptone enforced with vitamines and nucleic acids. In order to replace yeast extract completely, we examined several inexpensive nitrogen sources and their enzymatic hydrolyzates. The hydrolyzate of vital wheat gluten was the best of them.

  • PDF