• Title/Summary/Keyword: visual object tracking

Search Result 178, Processing Time 0.033 seconds

Weighted Parameter Analysis of L1 Minimization for Occlusion Problem in Visual Tracking (영상 추적의 Occlusion 문제 해결을 위한 L1 Minimization의 Weighted Parameter 분석)

  • Wibowo, Suryo Adhi;Jang, Eunseok;Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.101-103
    • /
    • 2016
  • Recently, the target object can be represented as sparse coefficient vector in visual tracking. Due to this reason, exploitation of the compressibility in the transform domain by using L1 minimization is needed. Further, L1 minimization is proposed to handle the occlusion problem in visual tracking, since tracking failures mostly are caused by occlusion. Furthermore, there is a weighted parameter in L1 minimization that influences the result of this minimization. In this paper, this parameter is analyzed for occlusion problem in visual tracking. Several coefficients that derived from median value of the target object, mean value of the arget object, the standard deviation of the target object are, 0, 0.1, and 0.01 are used as weighted parameter of L1 minimization. Based on the experimental results, the value which is equal to 0.1 is suggested as weighted parameter of L1 minimization, due to achieved the best result of success rate and precision performance parameter. Both of these performance parameters are based on one pass evaluation (OPE).

  • PDF

Object Tracking System Using Kalman Filter (칼만 필터를 이용한 물체 추적 시스템)

  • Xu, Yanan;Ban, Tae-Hak;Yuk, Jung-Soo;Park, Dong-Won;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1015-1017
    • /
    • 2013
  • Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, non-rigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location or the shape of the object in every frame. This paper describes an object tracking system based on active vision with two cameras, into algorithm of single camera tracking system an object active visual tracking and object locked system based on Extend Kalman Filter (EKF) is introduced, by analyzing data from which the next running state of the object can be figured out and after the tracking is performed at each of the cameras, the individual tracks are to be fused (combined) to obtain the final system object track.

  • PDF

Enhanced Representation for Object Tracking (물체 추적을 위한 강화된 부분공간 표현)

  • Yun, Frank;Yoo, Haan-Ju;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.408-410
    • /
    • 2009
  • We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.

  • PDF

A New Method of Object-based Tracking Modules for the Interactive Media

  • Kim, Young-Ouk;Suh, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.100.1-100
    • /
    • 2001
  • With the prolific growth of cable, satellite digital broadcasting and internet related industry, new digital contents are being demanded. Today, more end-users seek participations in the media through interactivity. Visual tracking technology, based on image processing, is mainly used in fields of human face tracking, security inspection, and traffic monitoring applications. In this research, we describe the interactive modules such as information display, e1-commerce and other services along with on-screen visuals on the streaming media using object visual tracking technology. The ...

  • PDF

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Voting based Cue Integration for Visual Servoing

  • Cho, Che-Seung;Chung, Byeong-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.798-802
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper, the robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is to use different models (CAD model etc.) known a priori. Also fusion of multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Because voting is a very simple or no model is needed for fusion, voting-based fusion of cues is applied. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters, namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

Visual object tracking using inter-frame correlation of convolutional feature maps (컨볼루션 특징 맵의 상관관계를 이용한 영상물체추적)

  • Kim, Min-Ji;Kim, Sungchan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.219-225
    • /
    • 2016
  • Visual object tracking is one of the key tasks in computer vision. Robust trackers should address challenging issues such as fast motion, deformation, occlusion and so on. In this paper, we therefore propose a visual object tracking method that exploits inter-frame correlations of convolutional feature maps in Convolutional Neural Net (ConvNet). The proposed method predicts the location of a target by considering inter-frame spatial correlation between target location proposals in the present frame and its location in the previous frame. The experimental results show that the proposed algorithm outperforms the state-of-the-art work especially in hard-to-track sequences.

Visual Object Tracking based on Particle Filters with Multiple Observation (다중 관측 모델을 적용한 입자 필터 기반 물체 추적)

  • Koh, Hyeung-Seong;Jo, Yong-Gun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.539-544
    • /
    • 2004
  • We investigate a visual object tracking algorithm based upon particle filters, namely CONDENSATION, in order to combine multiple observation models such as active contours of digitally subtracted image and the particle measurement of object color. The former is applied to matching the contour of the moving target and the latter is used to independently enhance the likelihood of tracking a particular color of the object. Particle filters are more efficient than any other tracking algorithms because the tracking mechanism follows Bayesian inference rule of conditional probability propagation. In the experimental results, it is demonstrated that the suggested contour tracking particle filters prove to be robust in the cluttered environment of robot vision.

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF

Neural Network Compensation for Improvement of Real-Time Moving Object Tracking Performance of the ROBOKER Head with a Virtual Link (가상링크 기반의 ROBOKER 머리의 실시간 대상체 추종 성능 향상을 위한 신경망 제어)

  • Kim, Dong-Min;Choi, Ho-Jin;Lee, Geun-Hyung;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.694-699
    • /
    • 2009
  • This paper presents the implementation of the real-time object tracking control of the ROBOKER head. The visual servoing technique is used to track the moving object, but suffers from ill-estimated Jacobian of the virtual link design. To improve the tracking performance, the RBF(Radial Basis Function) network is used to compensate for uncertainties in the kinematics of the robot head in on-line fashion. The reference compensation technique is employed as a neural network control scheme. Performances of three schemes, the kinematic based scheme, the Jacobian based scheme, and the neural network compensation scheme are verified by experimental studies. The neural compensation scheme performs best.