Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.
Sensors based bridge monitoring system (SBBMS) is designed to perform real-time monitoring and to store the performance history of in-service bridges. In general, visual inspections play a major role in maintenance of in-service bridges; however, they are not adequate to document the behavior of a bridge. Therefore, visual inspections and sensor based monitoring systems complement each other. Sensor based bridge monitoring systems consist of hardware and software systems. The hardware system contains the sensors and data-loggers to measure the behavior of a structure, the communicational equipment to transmit the measured data from the site to the monitoring center, and the computers to arrange and analyze the data. The software system controls data-loggers, arranges and analyzes the measured data, makes real-time display, stores the performance history.
Even though continuous management and supervision of reinforcement of policies to safeguard accidents at workplace and work sites were implemented. Accident prevention activities such as inspection and diagnosis are urgently required to induce a preliminary investigation to identify the risk factors for each type of work, before the work task to eliminate risks at the worksites. Since safety inspections at work sites were generally conducted through visual inspections, the results of safety inspections may vary depending on the findings and proficiency of the safety officers. The results of those inspections may have loopholes to prevent potential accidents at work. Therefore, the purpose of this study was to develop a risk identification checklist that can effectively perform safety inspections to prevent accidents at work sites. This study initially analyzed the previously developed accident checklist to identify current complications and issues in safety checklists. Based on the findings of major industrial accidents over the past three years, the relationship between accident, workplace, and work type were analyzed refereeing the safety inspection standards. A risk recognition-checklist was developed to provide basic data on identifying risk factors, and inspection guidance at work sites. To prepare for potential accidents by identifying and taking countermeasures to mitigate the high risk and serious accidents at sites by the guidelines of the checklist. The developed inspection checklist has been practically used by experts at work sites to perform safety inspections, and it has been verified its suitability, and feasibility, to prevent or mitigate workplace accidents, including securing the safety and health of field workers. The role of the developed safety checklist has been considered effective at worksites.
International Journal of Advanced Culture Technology
/
제11권1호
/
pp.389-394
/
2023
Based on intelligent visual information and 5G, this paper studies the intelligent visual communication of landscape bamboo buildings, and provides a new method of intelligent perception and interactive computing for the real world, which can represent, model, Perception and cognition; through the integration of virtual and real, the situational understanding of the human-machine-material fusion environment and the interaction with nature. The 5G network can well meet the combination of high-bandwidth uplink transmission and low-latency downlink control. At the same time, 5G-based AR intelligent inspection, remote operation and maintenance guidance, and machine vision inspection. Taking the bamboo building as an example, through field inspections to analyze tourism Bamboo buildings before and after development, and the intelligentization of bamboo buildings based on 5G and visual modeling.
해상송전철탑 구조물에 있어서 구조 및 재료 손상에 대해 주기적으로 안전점검을 실시하고, 그 결과를 이용한 수명관리(life management)의 시행은 적극 추천되는 일이다. 본 연구에서는 영흥도 시화호 내에 있는 총 6개의 해상송전철탑에 대해서 강재부재에 대해 3가지, 콘크리트 기초에 대해 5가지, 해수 중 강관파일 및 해수 자체에 대해 4가지 형태의 열화점검을 각각 수행하였다. 강재에 대한 점검 항목들은 외관조사, 부재두께, 도막상태 등에 대한 것이고, 콘크리트 기초에 있어서는 균열형상, 압축강도, 중성화깊이, 염화물 함유량 등에 대한 항목, 그리고 해중 강관파일에 있어서의 전위 및 양극조사에 따른 부식정도, 동영상 촬영 및 해수의 수질환경성 평가 등에 대한 항목이다. 이와 같은 정기적 열화점검은 연속 3년 동안 매년 10월경에 동일위치에 대해 평가하였다. 결과적으로 본 연구에서는 이러한 자료를 체계적으로 활용함으로써 해상송전철탑 안전성 유지관리에 유익하게 적용될 수 있는 새로운 열화지표를 개발하였다.
Chan, Brodie;Guan, Hong;Jo, Jun;Blumenstein, Michael
Structural Monitoring and Maintenance
/
제2권3호
/
pp.283-300
/
2015
Visual condition inspections remain paramount to assessing the current deterioration status of a bridge and assigning remediation or maintenance tasks so as to ensure the ongoing serviceability of the structure. However, in recent years, there has been an increasing backlog of maintenance activities. Existing research reveals that this is attributable to the labour-intensive, subjective and disruptive nature of the current bridge inspection method. Current processes ultimately require lane closures, traffic guidance schemes and inspection equipment. This not only increases the whole-of-life costs of the bridge, but also increases the risk to the travelling public as issues affecting the structural integrity may go unaddressed. As a tool for bridge condition inspections, Unmanned Aerial Vehicles (UAVs) or, drones, offer considerable potential, allowing a bridge to be visually assessed without the need for inspectors to walk across the deck or utilise under-bridge inspection units. With current inspection processes placing additional strain on the existing bridge maintenance resources, the technology has the potential to significantly reduce the overall inspection costs and disruption caused to the travelling public. In addition to this, the use of automated aerial image capture enables engineers to better understand a situation through the 3D spatial context offered by UAV systems. However, the use of UAV for bridge inspection involves a number of critical issues to be resolved, including stability and accuracy of control, and safety to people. SLAM (Simultaneous Localisation and Mapping) is a technique that could be used by a UAV to build a map of the bridge underneath, while simultaneously determining its location on the constructed map. While there are considerable economic and risk-related benefits created through introducing entirely new ways of inspecting bridges and visualising information, there also remain hindrances to the wider deployment of UAVs. This study is to provide a context for use of UAVs for conducting visual bridge inspections, in addition to addressing the obstacles that are required to be overcome in order for the technology to be integrated into current practice.
Previous research has explored early expression of fire signs before the burning of insulation. To achieve this, typically, automatic inspections are used to detect gas emitted from odor capsules at electrical connection points; additionally, early fire signs can be expressed using visual inspection of changes in the appearance of temperature caps. However, early detection of electrical fire is often difficult because only specific inspections, which are not complex, are performed. Therefore, in this paper, we present complex inspection techniques, such as visual inspection, odor inspection, and automatic inspection, and propose a showing material of fire signs that can solve conventional problems. In addition, this study examines the conditions under which the candidate material for the showing material is designed, the composition of the candidate material selected based on the designed conditions, the manufacturing means used to produce the showing material considering the temperature for early expression of fire signs, and the performance of the produced showing material. Furthermore, we analyze various effects that can occur through the proposed display material.
Corrosion can cause dangerous and expensive damage and failures of ship hulls and equipment. Therefore, it is necessary to maintain the vessel by periodic corrosion inspections. During visual inspection, many corrosion locations are inaccessible for many reasons, especially safety's point of view. Including subjective decisions of inspectors is one of the issues of visual inspection. Automation of visual inspection is tried by many pieces of research. In this study, we propose image preprocessing methods by image patch segmentation and thresholding. YOLOv5 was used as an object detection model after the image preprocessing. Finally, it was evaluated that corrosion detection performance using the proposed method was improved in terms of mean average precision.
최근 국내 주요 SOC 시설물의 사용 연수가 30년 이상을 넘어가고 있어, 10년 내 노후화가 급속도로 진행될 것으로 예상되면서 시설물의 선제적 유지관리에 대한 필요성이 대두되고 있다. 이에 따라 유지관리 분야에도 스마트 점검 기술을 도입하기 위한 연구가 다수 수행되고 있다. 하지만 현재 시설물 유지관리는 인력위주의 안전점검 및 진단에 맞춰 제도가 마련되어 있어, 실제 현장에서 육안조사에 의존하여 조사가 이뤄지고 있는 실정이다. 인력점검의 경우 점검시간이 과다 소요되고 결과 분석 시에 주관적인 오류 등이 발생할 수 있으며, 터널의 경우 일부 구간 차단으로 사회간접비용 손실 등이 발생한다는 단점이 있다. 따라서 스마트 안전점검을 제도적으로 도입하기 위해서는 첨단 장비 사용, 전문가 자격 변경 등 구체적인 방안 마련을 위한 검토가 필요하다. 또한 제도적 변경에 앞서 첨단 장비를 통한 안전점검 결과에 대한 확인 및 검증이 필요하므로, 국가차원의 공식적인 연구나 검증 기관 운영 등이 필요하다. 이를 통해 유지관리 분야에 스마트 점검 기술이 도입되면, 터널 등 SOC 시설물의 일상적인 점검이 가능해질 것으로 예상된다. 결과적으로 시설물 상태변화에 의한 안전사고를 미리 인지하고 선제적으로 대응할 수 있는 유지관리 기술이 정착될 수 있을 것으로 기대된다.
Journal of Construction Engineering and Project Management
/
제5권4호
/
pp.16-22
/
2015
This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.