• 제목/요약/키워드: vision-based vehicle detection

검색결과 126건 처리시간 0.027초

Vision Based Traffic Data Collection in Intelligent Transportation Systems

  • Mei Yu;Kim, Yong-Deak
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.773-776
    • /
    • 2000
  • Traffic monitoring plays an important role in intelligent transportation systems. It can be used to collect real-time traffic data concerning traffic flow. Passive shadows resulted from roadside buildings or trees and active shadows caused by moving vehicles, are one of the factors that arise errors in vision based vehicle detection. In this paper, a land mark based method is proposed for vehicle detection and shadow rejection, and finally vehicle count are achieved based on the land mark detection method.

  • PDF

스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발 (Development of a Vision Sensor-based Vehicle Detection System)

  • 황준연;홍대건;허건수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

비젼 기반 차량 검출 및 교통 파라미터 추출 (Vision Based Vehicle Detection and Traffic Parameter Extraction)

  • 하동문;이종민;김용득
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권11호
    • /
    • pp.610-620
    • /
    • 2003
  • 다양한 그림자는 비젼 기반 차량 검출에서 오류를 발생시키는 주요 원인이다. 본 논문에서는 노면 표시 기반 방법과 배경 빼기 및 에지(BS & Edge) 방법이라는 두 가지 방안을 차량 검출과 그림자 제거를 위해 제안하였다. 노변의 지형 지물들로 인해서 발생하는 그림자의 영향이 크게 증가하는 상황에서의 실험을 통해서 96% 이상의 차량 검출 정확도를 나타냄을 확인하였다. 전술한 두 가지 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통 파라미터를 추출하였다.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

다중-클래스 SVM 기반 야간 차량 검출 (Night-time Vehicle Detection Based On Multi-class SVM)

  • 임효진;이희용;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

영상 기반의 차량 검출 및 차간 거리 추정 방법 (Vision-based Vehicle Detection and Inter-Vehicle Distance Estimation)

  • 김기수;조재수
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문에서는 영상 센서를 이용한 강인한 차량 검출 및 차간거리 추정 알고리즘을 제안한다. 제안된 차량 검출 알고리즘은 차량의 가장 큰 특징인 차량 하단의 그림자부분과 차량의 뒷바퀴 부분을 추출하기 위해 Haar-like 특징들과 차량 뒷부분의 방향성 에지특징을 동시에 활용하기 때문에 더욱 강인한 차량 검출 효과가 있다. 차량의 그림자에 해당하는 Haar-like 특징에 추가적인 방향성 에지특징은 차량이 아닌 부분을 잘못 검출하는 오검출률(false-positive error)을 현격히 줄이는 효과가 있고, 차량 추적기법을 통해 전체적인 수행 속도를 크게 개선한다. 그리고 차간거리 추정 알고리즘에서는 먼저 영상에 나타난 차량의 위치를 통해 추정하는 방법과 차량의 폭을 이용한 두 방법의 장단점을 분석한 후, 차량의 위치를 이용하는 방법이 가지고 있는 문제점과 차량의 폭을 이용한 방법의 단점을 극복하면서, 차간거리의 정확도를 높일 수 있는 개선된 방법을 제안한다. 제안된 차량 검출 및 차간거리 추정 알고리즘의 효용성을 입증하기 위해 다양한 실험영상들을 통해 그 효과를 입증한다.

State Machine and Downhill Simplex Approach for Vision-Based Nighttime Vehicle Detection

  • Choi, Kyoung-Ho;Kim, Do-Hyun;Kim, Kwang-Sup;Kwon, Jang-Woo;Lee, Sang-Il;Chen, Ken;Park, Jong-Hyun
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, a novel vision-based nighttime vehicle detection approach is presented, combining state machines and downhill simplex optimization. In the proposed approach, vehicle detection is modeled as a sequential state transition problem; that is, vehicle arrival, moving, and departure at a chosen detection area. More specifically, the number of bright pixels and their differences, in a chosen area of interest, are calculated and fed into the proposed state machine to detect vehicles. After a vehicle is detected, the location of the headlights is determined using the downhill simplex method. In the proposed optimization process, various headlights were evaluated for possible headlight positions on the detected vehicles; allowing for an optimal headlight position to be located. Simulation results were provided to show the robustness of the proposed approach for nighttime vehicle and headlight detection.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

자율주행차량을 위한 비젼 기반의 횡방향 제어 시스템 개발 (Development of Vision-based Lateral Control System for an Autonomous Navigation Vehicle)

  • 노광현
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.19-25
    • /
    • 2005
  • This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.