Abstract
In this paper, we propose a vision-based robust vehicle detection and inter-vehicle distance estimation algorithm for driving assistance system. We use the haar-like features of car rear-shadows, as well as the edge features for detecting of vehicles. The use of additional vehicle edge features greatly reduces the false-positive errors in the vehicle detection. And, after analyzing the conventional two inter-vehicle distance estimation methods: the location-based and the vehicle width-based, an improved inter-vehicle distance estimation algorithm which has the advantage of both method is proposed. Several experimental results show the effectiveness of the proposed method.
본 논문에서는 영상 센서를 이용한 강인한 차량 검출 및 차간거리 추정 알고리즘을 제안한다. 제안된 차량 검출 알고리즘은 차량의 가장 큰 특징인 차량 하단의 그림자부분과 차량의 뒷바퀴 부분을 추출하기 위해 Haar-like 특징들과 차량 뒷부분의 방향성 에지특징을 동시에 활용하기 때문에 더욱 강인한 차량 검출 효과가 있다. 차량의 그림자에 해당하는 Haar-like 특징에 추가적인 방향성 에지특징은 차량이 아닌 부분을 잘못 검출하는 오검출률(false-positive error)을 현격히 줄이는 효과가 있고, 차량 추적기법을 통해 전체적인 수행 속도를 크게 개선한다. 그리고 차간거리 추정 알고리즘에서는 먼저 영상에 나타난 차량의 위치를 통해 추정하는 방법과 차량의 폭을 이용한 두 방법의 장단점을 분석한 후, 차량의 위치를 이용하는 방법이 가지고 있는 문제점과 차량의 폭을 이용한 방법의 단점을 극복하면서, 차간거리의 정확도를 높일 수 있는 개선된 방법을 제안한다. 제안된 차량 검출 및 차간거리 추정 알고리즘의 효용성을 입증하기 위해 다양한 실험영상들을 통해 그 효과를 입증한다.