• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.034 seconds

Development of Fire Detection Algorithm using Intelligent context-aware sensor (상황인지 센서를 활용한 지능형 화재감지 알고리즘 설계 및 구현)

  • Kim, Hyeng-jun;Shin, Gyu-young;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.93-96
    • /
    • 2015
  • In this paper, we introduce a fire detection system using context-aware sensor. In existing weather and based on vision sensor of fire detection system case, acquired image through sensor of camera is extracting features about fire range as processing to convert HSI(Hue, Saturation, Intensity) model HSI which is color space can have durability in illumination changes. However, in this case, until a fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. Additionally, the fire detection in complex situations as well as difficult to separate continuous boundary is set for the required area is difficult. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire it. In addition, it is possible to differential management to intensive fire detection is required zone dividing the state of fire.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Two Feature Points Based Laser Scanner for Mobile Robot Navigation (레이저 센서에서 두 개의 특징점을 이용한 이동로봇의 항법)

  • Kim, Joo-Wan;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Mobile robots use various sensors for navigation such as wheel encoder, vision sensor, sonar, and laser sensors. Dead reckoning is used with wheel encoder, resulting in the accumulation of positioning errors. For that reason wheel encoder can not be used alone. Too much information of vision sensors leads to an increase in the number of features and complexity of perception scheme. Also Sonar sensor is not suitable for positioning because of its poor accuracy. On the other hand, laser sensor provides accurate distance information relatively. In this paper we propose to extract the angular information from the distance information of laser range finder and use the Kalman filter that match the heading and distance of the laser range finder and those of wheel encoder. For laser scanner with one feature point error may increase much when the feature point is variant or jumping to a new feature point. To solve the problem, we propose to use two feature points and show that the positioning error can be reduced much.

A Study on Development of the Optimization Algorithms to Find the Seam Tracking (용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구)

  • Jin, Byeong-Ju;Lee, Jong-Pyo;Park, Min-Ho;Kim, Do-Hyeong;Wu, Qian-Qian;Kim, Il-Soo;Son, Joon-Sik
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

Blurred Image Enhancement Techniques Using Stack-Attention (Stack-Attention을 이용한 흐릿한 영상 강화 기법)

  • Park Chae Rim;Lee Kwang Ill;Cho Seok Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • Blurred image is an important factor in lowering image recognition rates in Computer vision. This mainly occurs when the camera is unstablely out of focus or the object in the scene moves quickly during the exposure time. Blurred images greatly degrade visual quality, weakening visibility, and this phenomenon occurs frequently despite the continuous development digital camera technology. In this paper, it replace the modified building module based on the Deep multi-patch neural network designed with convolution neural networks to capture details of input images and Attention techniques to focus on objects in blurred images in many ways and strengthen the image. It measures and assigns each weight at different scales to differentiate the blurring of change and restores from rough to fine levels of the image to adjust both global and local region sequentially. Through this method, it show excellent results that recover degraded image quality, extract efficient object detection and features, and complement color constancy.

The influence of social capital on knowledge sharing behavior of mobile learners (사회적 자본이 이동학습자의 지식공유행위에 미치는 영향)

  • Qin, Ying;Lee, Kyeong-Rak;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.647-658
    • /
    • 2018
  • Modern society is complex and rapidly changing, and knowledge sharing is needed to acquire and create knowledge. Knowledge sharing is the act of providing information knowledge and know-how of their own in order to cooperate with or help their colleagues. This study presents a research model using social capital theory to explain the mobile knowledge sharing behavior of virtual community members. Based on previous studies, social capital theory is divided into structural, relational, and cognitive aspects. It was composed of social interaction ties as a measure of structural aspect, trust as a measure of cognitive aspect, shared language, shared vision and relational aspect. After collecting survey data, factor analysis and regression analysis were performed using SPSS 22. In this way, we examined how the detailed factors of social capital affect information sharing behavior and how the level of knowledge sharing affects community promotion. The results showed that social interaction ties, shared language, shared vision, and trust affect knowledge sharing. Knowledge sharing has had a positive impact on community promotion.

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF

Development of Vision-Based Vehicle Tracking for Extracting Microscopic Traffic Information (미시적 교통정보자료의 취득을 위한 영상기반 차량추적기술 개발)

  • Lee, Ki-Young;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.137-148
    • /
    • 2005
  • The position information of individual vehicles on a road at every time instant can be used to analyze the microscopic behaviors of driving of each vehicle. The limited information obtained from previous imaging technology such as traffic volume and interval velocity cannot be used to explore such microscopic traffic conditions. Also, information gathering for the microscopic behaviors by manual analysis of captured video takes large amount of time and man-power. In the paper we develop the rule-based vehicle tracking technology from which the position information of individual vehicles on a road at every time instant can be automatically obtained. Also, we extract the position data of driving vehicles on a road, length of 130m for every 0.05 second, and calculate the velocity of each traced vehicles to compare with the real velocity for the verification of accuracy. In the future, this type of tracking techniques based on video analysis can be widely used to provide the practically important information of road traffic conditions and to analyze the academically important microscopic behaviors of driving patterns.

Error Correction Scheme in Location-based AR System Using Smartphone (스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법)

  • Lee, Ju-Yong;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • Spread of smartphone creates various contents. Among many contents, AR application using Location Based Service(LBS) is needed widely. In this paper, we propose error correction algorithm for location-based Augmented Reality(AR) system using computer vision technology in android environment. This method that detects the early features with SURF(Speeded Up Robust Features) algorithm to minimize the mismatch and to reduce the operations, and tracks the detected, and applies it in mobile environment. We use the GPS data to retrieve the location information, and use the gyro sensor and G-sensor to get the pose estimation and direction information. However, the cumulative errors of location information cause the mismatch that and an object is not fixed, and we can not accept it the complete AR technology. Because AR needs many operations, implementation in mobile environment has many difficulties. The proposed approach minimizes the performance degradation in mobile environments, and are relatively simple to implement, and a variety of existing systems can be useful in a mobile environment.

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Recently, deep learning technology is widely used in various computer vision applications, such as object recognition, classification, and image generation. In particular, the deep learning-based super-resolution has been gaining significant performance improvement. Fast super-resolution convolutional neural network (FSRCNN) is a well-known model as a deep learning-based super-resolution algorithm that output image is generated by a deconvolutional layer. In this paper, we propose an FPGA-based convolutional neural networks accelerator that considers parallel computing efficiency. In addition, the proposed method proposes Optimal-FSRCNN, which is modified the structure of FSRCNN. The number of multipliers is compressed by 3.47 times compared to FSRCNN. Moreover, PSNR has similar performance to FSRCNN. We developed a real-time image processing technology that implements on FPGA.