• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.031 seconds

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

우리 나라 중소기업의 전략변화와 기술능력 학습 - 우리나라 전자부품 산업에 대한 사례연구 -

  • 이병헌;김영배
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.57-90
    • /
    • 1998
  • This study attempts to explore the evolution paths of Korean SMEs'strategies and their technological teaming processes. Several different evolution paths are identified based on a dynamic strategic group analysis of 115 SMEs'strategy in the Korean electronic component industry for the period of 1990-1995. Further, inadept case analyses on technological learning processes in 5 firms are undertaken. Major findings of this study can be summarized as follows : 1) There are three dominant evolution paths in SMEs'strategy. First path indicates the evolution from a subcontractor or petty imitator group(a strategic group with the narrow product/market domain and the low level of accumulated resource/capabilities) into an innovator group(a strategic group with the narrow domain but high level of technological capability) by accumulating technological capabilities. Second, some firms move from a subcontractor group into a generalizer group(a strategic group with broad product/market domain but relatively low level of technological capability) by simply adding product lines. Third path involves firms which evolve from a subcontractor group into a production focus group(a strategic group with high level of production capability) by investing in production capabilities. 2) An in-depth case analysis shows those who succeeded in technological learning are managed by CEOs, who have technological expertise and strategic vision, and have made an effort to establish management practices to support innovation, such employee educational program, performance-based reward system, etc. The successful firms also aggressively pursue diverse external linkages with outside technology sources to learn product and process technologies. Fiendly, this study discusses several implications of the findings for the theoretical development and strategic management of small firms in Korea.

  • PDF

PERSONAL SPACE-BASED MODELING OF RELATIONSHIPS BETWEEN PEOPLE FOR NEW HUMAN-COMPUTER INTERACTION

  • Amaoka, Toshitaka;Laga, Hamid;Saito, Suguru;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.746-750
    • /
    • 2009
  • In this paper we focus on the Personal Space (PS) as a nonverbal communication concept to build a new Human Computer Interaction. The analysis of people positions with respect to their PS gives an idea on the nature of their relationship. We propose to analyze and model the PS using Computer Vision (CV), and visualize it using Computer Graphics. For this purpose, we define the PS based on four parameters: distance between people, their face orientations, age, and gender. We automatically estimate the first two parameters from image sequences using CV technology, while the two other parameters are set manually. Finally, we calculate the two-dimensional relationship of multiple persons and visualize it as 3D contours in real-time. Our method can sense and visualize invisible and unconscious PS distributions and convey the spatial relationship of users by an intuitive visual representation. The results of this paper can be used to Human Computer Interaction in public spaces.

  • PDF

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

OpenCV-based Autonomous Vehicle (OpenCV 기반 자율 주행 자동차)

  • Lee, Jin-Woo;Hong, Dong-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.538-539
    • /
    • 2018
  • This paper summarizes the implementation of lane recognition using OpenCV, one of the open source computer vision libraries. The Linux operating system Rasbian(r18.03.13) was installed on the ARM processor-based Raspberry Pi 3 board, and Raspberry Pi Camera was used for image processing. In order to realize the lane recognition, Canny Edge Detection and Hough Transform algorithm implemented in OpenCV library was used and RANSAC algorithm was used to prevent shaking of vanishing point and to detect only the desired straight line. In addtion, the DC motor and the Servo motor were controlled so that the vehicle would run according to the detected lane.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Kim, Moon-Hwan;hwang, suen ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

  • PDF

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

A study of duck detection using deep neural network based on RetinaNet model in smart farming

  • Jeyoung Lee;Hochul Kang
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.846-858
    • /
    • 2024
  • In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve the foregoing. Object detection refers to the work to perform classification and localization of all objects present in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used for learning should be made and the data should be augmented to secure enough data to learn from. In addition, the time required for object detection and the accuracy of object detection are important. The study collected, processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on the objects that must be detected, the data collected as such were divided at a ratio of 9 : 1, and learning and verification were performed. The final results were visually confirmed using images different from the images used for learning. The proposed method is expected to be used for minimizing human resources in the growing process in duck cages and making the duck cages into smart farms.

Design of Curve Road Detection System by Convergence of Sensor (센서 융합에 의한 곡선차선 검출 시스템 설계)

  • Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.253-259
    • /
    • 2016
  • Regarding the research on lane recognition, continuous studies have been in progress for vehicles to navigate autonomously and to prevent traffic accidents, and lane recognition and detection have remarkably developed as different algorithms have appeared recently. Those studies were based on vision system and the recognition rate was improved. However, in case of driving at night or in rain, the recognition rate has not met the level at which it is satisfactory. Improving the weakness of the vision system-based lane recognition and detection, applying sensor convergence technology for the response after accident happened, among studies on lane detection, the study on the curve road detection was conducted. It proceeded to study on the curve road detection among studies on the lane recognition. In terms of the road detection, not only a straight road but also a curve road should be detected and it can be used in investigation on traffic accidents. Setting the threshold value of curvature from 0.001 to 0.06 showing the degree of the curve, it presented that it is able to compute the curve road.