• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.026 seconds

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

A Study on the Automated Payment System for Artificial Intelligence-Based Product Recognition in the Age of Contactless Services

  • Kim, Heeyoung;Hong, Hotak;Ryu, Gihwan;Kim, Dongmin
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.100-105
    • /
    • 2021
  • Contactless service is rapidly emerging as a new growth strategy due to consumers who are reluctant to the face-to-face situation in the global pandemic of coronavirus disease 2019 (COVID-19), and various technologies are being developed to support the fast-growing contactless service market. In particular, the restaurant industry is one of the most desperate industrial fields requiring technologies for contactless service, and the representative technical case should be a kiosk, which has the advantage of reducing labor costs for the restaurant owners and provides psychological relaxation and satisfaction to the customer. In this paper, we propose a solution to the restaurant's store operation through the unmanned kiosk using a state-of-the-art artificial intelligence (AI) technology of image recognition. Especially, for the products that do not have barcodes in bakeries, fresh foods (fruits, vegetables, etc.), and autonomous restaurants on highways, which cause increased labor costs and many hassles, our proposed system should be very useful. The proposed system recognizes products without barcodes on the ground of image-based AI algorithm technology and makes automatic payments. To test the proposed system feasibility, we established an AI vision system using a commercial camera and conducted an image recognition test by training object detection AI models using donut images. The proposed system has a self-learning system with mismatched information in operation. The self-learning AI technology allows us to upgrade the recognition performance continuously. We proposed a fully automated payment system with AI vision technology and showed system feasibility by the performance test. The system realizes contactless service for self-checkout in the restaurant business area and improves the cost-saving in managing human resources.

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

A Study on Vision-based Calibration Method for Bin Picking Robots for Semiconductor Automation (반도체 자동화를 위한 빈피킹 로봇의 비전 기반 캘리브레이션 방법에 관한 연구)

  • Kyo Mun Ku;Ki Hyun Kim;Hyo Yung Kim;Jae Hong Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.72-77
    • /
    • 2023
  • In many manufacturing settings, including the semiconductor industry, products are completed by producing and assembling various components. Sorting out from randomly mixed parts and classification operations takes a lot of time and labor. Recently, many efforts have been made to select and assemble correct parts from mixed parts using robots. Automating the sorting and classification of randomly mixed components is difficult since various objects and the positions and attitudes of robots and cameras in 3D space need to be known. Previously, only objects in specific positions were grasped by robots or people sorting items directly. To enable robots to pick up random objects in 3D space, bin picking technology is required. To realize bin picking technology, it is essential to understand the coordinate system information between the robot, the grasping target object, and the camera. Calibration work to understand the coordinate system information between them is necessary to grasp the object recognized by the camera. It is difficult to restore the depth value of 2D images when 3D restoration is performed, which is necessary for bin picking technology. In this paper, we propose to use depth information of RGB-D camera for Z value in rotation and movement conversion used in calibration. Proceed with camera calibration for accurate coordinate system conversion of objects in 2D images, and proceed with calibration of robot and camera. We proved the effectiveness of the proposed method through accuracy evaluations for camera calibration and calibration between robots and cameras.

  • PDF

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Analysis of Image Quality Based on Perceptual Vision

  • Xue, Liqin;Hua, Yuning;Qi, Yaping
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1494-1496
    • /
    • 2007
  • This paper deals with image quality analysis considering the impact of psychological factors involved in assessment. The attributes of image quality requirement were partitioned according to the visual perception characteristics and the preference of image quality were obtained by the factor analysis method. The features of image quality which support the subjective preference were identified, The adequacy of image is evidenced to be the top requirement issues to the display image quality improvement.

  • PDF

Trends of Plant Image Processing Technology (이미지 기반의 식물 인식 기술 동향)

  • Yoon, Y.C.;Sang, J.H.;Park, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.54-60
    • /
    • 2018
  • In this paper, we analyze the trends of deep-learning based plant data processing technologies. In recent years, the deep-learning technology has been widely applied to various AI tasks, such as vision (image classification, image segmentation, and so on) and natural language processing because it shows a higher performance on such tasks. The deep-leaning method is also applied to plant data processing tasks and shows a significant performance. We analyze and show how the deep-learning method is applied to plant data processing tasks and related industries.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Motion Segmentation from Color Video Sequences based on AMF

  • Kim, Alla;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 2009
  • A process of identifying moving objects from data is typical task in many computer vision applications. In this paper, we propose a motion segmentation method that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modelling. To demonstrate the effectiveness of proposed approach, we tested it gray-scale video data as well as RGB color space.

  • PDF