• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.038 seconds

Associative Interactive play Contents for Infant Imagination

  • Jang, Eun-Jung;Lee, Chankyu;Lim, Chan
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.126-132
    • /
    • 2019
  • Creative thinking appears even before it is expressed in language, and its existence is revealed through emotion, intuition, image and body feeling before logic or linguistics rules work. In this study, Lego is intended to present experimental child interactive content that is applied with a computer vision based on image processing techniques. In the case of infants, the main purpose of this content is the development of hand muscles and the ability to implement imagination. The purpose of the analysis algorithm of the OpenCV library and the image processing using the 'VVVV' that is implemented as a 'Node' in the midst of perceptual changes in image processing technology that are representative of object recognition, and the objective is to use a webcam to film, recognize, derive results that match the analysis and produce interactive content that is completed by the user participating. Research shows what Lego children have made, and children can create things themselves and develop creativity. Furthermore, we expect to be able to infer a diverse and individualistic person's thinking based on more data.

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Development of Image-Based Artificial Intelligence Model to Automate Material Management at Construction Site (공사현장 자재관리 자동화를 위한 영상기반 인공지능 모델개발)

  • Shin, Yoon-soo;Kim, Junhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.221-222
    • /
    • 2021
  • Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.

  • PDF

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Advancing Road Infrastructure Management and Safety Through Pothole Classification Standards and Technology: A South Korean Perspective

  • Wonwoo SHIN;Kyubyung KANG;Sungkon MOON
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1035-1040
    • /
    • 2024
  • South Korea has seen an increased demand for road maintenance, since they experienced a rapid industrialization in 1960-70s. Between 2019 and the end of 2022, the total national expenditure on road maintenance steadily rose from KRW 3.4 trillion to KRW 4.5 trillion. Roads, responsible for about 80% of the nation's transportation, significantly affect ride quality, safety and maintenance costs. Among the different perspectives, this study focuses on the prevalence of potholes. Over 24,000 pothole instances are reported on highways in the past five years, which raises concerns due to various direct and indirect effects on road maintenance and safety issues. Various methods, including vision-based, vibration-based, and 3D reconstruction-based techniques, have been proposed for pothole detection and inspection. Vision-based methods effectively count and measure pothole shapes but which are sensitive to lighting conditions. Vibration-based methods offer cost-effectiveness, although it may not provide precise pothole shape information. 3D reconstruction-based methods deliver accurate shape measurements, while it comes with higher costs. To establish an effective road maintenance system, prioritization criteria for potholes is required to be established and applied. These criteria may vary across countries or regions. For example, in the United States, potholes are classified based on depth into Low (<25mm deep), Moderate (25 to 50mm deep), and High (>50mm deep). In conclusion, this research addresses this research challenge of road damage and potholes in South Korea by exploring various pothole classification standards and utilizing advanced technology to develop an efficient road maintenance system. The outcome would benefit improved road infrastructure management and enhanced safety.

A Study of National Technology Road Map in Logistics (물류기술 국가로드맵에 관한 연구)

  • 변의석;안승범;박용화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.50-55
    • /
    • 2003
  • Among many logistics technologies, primary area should be investigated in terms of long term periods. Therefore private company and public sector can visualize approaches to their corresponding industry. In this paper, we introduce vision and roadmap for integrated logistics systems based on national technology as well as three technology areas and fifteen core elements.

Physical Properties Analysis of Mango using Computer Vision

  • Yimyam, Panitnat;Chalidabhongse, Thanarat;Sirisomboon, Panmanas;Boonmung, Suwanee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.746-750
    • /
    • 2005
  • This paper describes image processing techniques that can detect, segment, and analyze the mango's physical properties such as size, shape, surface area, and color from images. First, images of mangoes taken by a digital camera are analyzed and segmented. The segmentation is done based on constructed hue model of the sample mangoes. Some morphological and filtering techniques are then applied to clean noises before fitting spline curve on the mango boundary. From the clean segmented image, the mango projected area can be computed. The shape of the mango is then analyzed using some structuring models. Color is also spatially analyzed and indexed in the database for future classification. To obtain the surface area, the mango is peeled. The scanned image of its peels is then segmented and filtered using similar approach. With calibration parameters, the surface area could then be computed. We employed the system to evaluate physical properties of a mango cultivar called "Nam Dokmai". There were sixty mango samples in three various sizes graded by an experienced farmer's eyes and hands. The results show the techniques could be a good alternative and more feasible method for grading mango comparing to human's manual grading.

  • PDF

Analysis of 3D Motion Recognition using Meta-analysis for Interaction (기존 3차원 인터랙션 동작인식 기술 현황 파악을 위한 메타분석)

  • Kim, Yong-Woo;Whang, Min-Cheol;Kim, Jong-Hwa;Woo, Jin-Cheol;Kim, Chi-Jung;Kim, Ji-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.925-932
    • /
    • 2010
  • Most of the research on three-dimensional interaction field have showed different accuracy in terms of sensing, mode and method. Furthermore, implementation of interaction has been a lack of consistency in application field. Therefore, this study is to suggest research trends of three-dimensional interaction using meta-analysis. Searching relative keyword in database provided with 153 domestic papers and 188 international papers covering three-dimensional interaction. Analytical coding tables determined 18 domestic papers and 28 international papers for analysis. Frequency analysis was carried out on method of action, element, number, accuracy and then verified accuracy by effect size of the meta-analysis. As the results, the effect size of sensor-based was higher than vision-based, but the effect size was extracted to small as 0.02. The effect size of vision-based using hand motion was higher than sensor-based using hand motion. Therefore, implementation of three-dimensional sensor-based interaction and vision-based using hand motions more efficient. This study was significant to comprehensive analysis of three-dimensional motion recognition for interaction and suggest to application directions of three-dimensional interaction.

3D Visualization and Work Status Analysis of Construction Site Objects

  • Junghoon Kim;Insoo Jeong;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.447-454
    • /
    • 2024
  • Construction site monitoring is pivotal for overseeing project progress to ensure that projects are completed as planned, within budget, and in compliance with applicable laws and safety standards. Additionally, it seeks to improve operational efficiency for better project execution. To achieve this, many researchers have utilized computer vision technologies to conduct automatic site monitoring and analyze the operational status of equipment. However, most existing studies estimate real-world 3D information (e.g., object tracking, work status analysis) based only on 2D pixel-based information of images. This approach presents a substantial challenge in the dynamic environments of construction sites, necessitating the manual recalibration of analytical rules and thresholds based on the specific placement and the field of view of cameras. To address these challenges, this study introduces a novel method for 3D visualization and status analysis of construction site objects using 3D reconstruction technology. This method enables the analysis of equipment's operational status by acquiring 3D spatial information of equipment from single-camera images, utilizing the Sam-Track model for object segmentation and the One-2-3-45 model for 3D reconstruction. The framework consists of three main processes: (i) single image-based 3D reconstruction, (ii) 3D visualization, and (iii) work status analysis. Experimental results from a construction site video demonstrated the method's feasibility and satisfactory performance, achieving high accuracy in status analysis for excavators (93.33%) and dump trucks (98.33%). This research provides a more consistent method for analyzing working status, making it suitable for practical field applications and offering new directions for research in vision-based 3D information analysis. Future studies will apply this method to longer videos and diverse construction sites, comparing its performance with existing 2D pixel-based methods.