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Abstract: Construction site monitoring is pivotal for overseeing project progress to ensure that projects 

are completed as planned, within budget, and in compliance with applicable laws and safety standards. 

Additionally, it seeks to improve operational efficiency for better project execution. To achieve this, 

many researchers have utilized computer vision technologies to conduct automatic site monitoring and 

analyze the operational status of equipment. However, most existing studies estimate real- 3Dworld

information (e.g., object tracking, work status analysis) based only on 2D pixel-based information of 

images. This approach presents a substantial challenge in the dynamic environments of construction 

sites, necessitating the manual recalibration of analytical rules and thresholds based on the specific 

placement and the field of view of cameras. To address these challenges, this study introduces a novel 

method for 3D visualization and status analysis of construction site objects using 3D reconstruction 

technology. This method enables the analysis of equipment's operational status by acquiring 3D spatial 

information of equipment from single-camera images, utilizing the Sam-Track model for object 

segmentation and the One-2-3-45 model for 3D reconstruction. The framework consists of three main 

processes: (i) single image-based 3D reconstruction, (ii) 3D visualization, and (iii) work status analysis. 

Experimental results from a construction site video demonstrated the method's feasibility and 

satisfactory performance, achieving high accuracy in status analysis for excavators (93.33%) and dump 

trucks (98.33%). This research provides a more consistent method for analyzing working status, making 

it suitable for practical field applications and offering new directions for research in vision- 3Dbased

information analysis. Future studies will apply this method to longer videos and diverse construction 

sites, comparing its performance with existing 2D pixel-based methods. 

 

Key words:  Operational Productivity, 3D Reconstruction, Computer Vision, Status Analysis, Object 

Segmentation 

 

1. INTRODUCTION 

Construction site monitoring involves tracking the progress of the projects and supervising them to 

ensure they are completed as planned, within budget, and in compliance with relevant laws and safety 

regulations. Furthermore, this process is integral to bolstering operational efficiency, thereby facilitating 
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more effective project execution. Operational productivity, defined as the ratio of production outputs 

(e.g., the quantity of rebar installed) to input resources (e.g., labor hours on the worksite), is one of the 

key performance indicators in construction operations [1]. Additionally, it provides critical information 

for various construction management tasks, including project estimation, financial planning, and 

schedule development [2]. Enhancing this operational productivity is a primary concern for site 

managers and directly correlates with the company's benefits, further posing a challenge that the 

construction industry must address.  

In the academic realm, numerous researchers have explored various approaches to enhance 

construction operational productivity. For instance, computer vision-based automatic monitoring 

technologies have been utilized to automatically detect and track equipment and workers on-site through 

CCTV systems installed at construction sites. Furthermore, beyond mere detection and tracking, studies 

have also been conducted to analyze the work status of each piece of equipment and worker, providing 

productivity information. These technologies offer site managers meaningful data to improve project 

productivity and are indeed being implemented in various sites for site management purposes. For 

instance, by providing information on the working hours and output of each object, it is possible to 

adjust future work plans accordingly and take action in areas where problems arise. While the 

application of academic research findings in the actual industry sector is moving in a favorable direction, 

generating benefits, there still exist limitations to the practical application of these technologies.  

Currently, the majority of computer vision-based monitoring technologies conduct analyses based on 

two-dimensional (2D) pixel information. This 2D pixel-based analysis refers to utilizing the bounding 

box information (i.e., x and y pixel coordinates within the image) of objects detected in the image. 

Various rule-based analyses utilize this bounding box data to assess the operational status of the 

equipment. For example, if the center coordinates of an object's bounding box shift beyond a predefined 

threshold between frames, the object is categorized as moving; if not, it is deemed stationary. 

Additionally, if the distance between the bounding boxes of two objects falls below a specified threshold, 

they are considered to be interacting. The state of work, stop, or movement is then determined based on 

the objects' Intersection over Union (IoU) value. However, the criteria for determining the work status 

of objects change depending on the camera placement and the field of view (FOV). For example, if the 

distance for determining the interaction between equipment were 100 pixels for one camera, this 

criterion would need to be reduced for shots taken closer to the construction site. Thus, 2D pixel-based 

analysis requires setting manual criteria for each camera, and these criteria must be modified whenever 

the work site changes. Furthermore, given the nature of construction sites, where the work environment 

changes over time, the practical application of this technology faces significant challenges.  

To address this issue, researchers are exploring various approaches, including using multi-camera or 

integrating vision and sensor technologies. This study proposes a method for three-dimensional (3D) 

visualization and work status analysis of construction site objects using 3D reconstruction technology. 

The proposed framework consists of three stages: (i) single image-based 3D reconstruction, (ii) 3D 

visualization, and (iii) work status analysis. Through the proposed framework, it is possible to perform 

more accurate equipment status analyses using 3D spatial information without the need to adjust settings 

based on camera viewpoints. Furthermore, it is anticipated that the results can be used to conduct project 

simulations in 3D space, thereby enhancing overall site productivity. 

2. LITERATURE REVIEW 

In the early stages, the application of computer vision in the construction sector was primarily directed 

towards addressing fundamental tasks related to the detection and tracking of resources. For instance, 

Azar and McCabe [3] identified the off-highway dump trucks by employing the Haar-Histogram of 

Oriented Gradients (HOG) and Blob-HOG techniques. This approach aimed to identify and track dump 

trucks precisely, which are critical resources in construction operations. Memarzadeh et al. [4] proposed 

an equipment detection algorithm using HOG-colors and a Support Vector Machine (SVM) classifier. 

Ji et al. [5] developed an intelligent site monitoring system that detects dump trucks and excavators 

using a foreground detection algorithm. Xiao et al. [6] proposed a construction machinery tracker that 

utilizes YOLOv3 to track multiple construction machines simultaneously. 

Furthermore, studies have been carried out on analyzing operational productivity through the use of 

object detection and tracking algorithms. For example, Gong and Caldas [7] presented a vision-based 

video interpretation model aimed at automatically transforming videos of construction operations into 

productivity information. Kim et al. [8] introduced an automatic method for evaluating productivity in 
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tunnel earthwork processes, which combines vision-based contextual inference and construction process 

simulations through the use of a convolutional neural network (CNN) model. They determined the 

operational status by analyzing the changes in distance between the bounding boxes of dump trucks and 

excavators. Rashid and Louis [9] developed synthetic time-series training data for the purpose of 

recognizing equipment activities utilizing a recurrent neural network (RNN) architecture based on long 

short-term memory (LSTM). Applying RNN requires a comprehensive training dataset, a challenge they 

addressed by augmenting synthetic time-series data. Roberts and Golparvar-Fard [10] also assessed 

operational productivity by analyzing interactions between dump trucks and excavators using a CNN-

based approach. They analyzed the equipment's status by calculating its velocity through the movement 

of the bounding box centers. Kim et al. [11] proposed a vision-based framework for activity 

identification, concentrating on the interaction between dump trucks and excavators to classify 

earthwork tasks and evaluate their work cycles. The suggested framework utilized a rule-based approach 

for activity analysis, focusing on variations in centroid positions between image frames and the sum of 

pixel differences between frames.  

As mentioned above, in the field of construction vision technology, while numerous studies have 

focused on site monitoring and productivity, the majority have based their analyses on 2D information 

to infer actual 3D data. Moreover, to estimate 3D data from 2D information, various rules had to be 

established, which vary depending on camera placement or training datasets, significantly affecting 

model performance. Researchers have attempted various approaches to overcome the limitations of 

these 2D pixel-based estimations. For instance, Park et al. [12] corrected the results of 2D pixel-based 

estimations by tracking designated objects in 2D video frames and correlating the outcomes across 

multiple pre-calibrated views using epipolar geometry. Luo et al. [13] developed a method to estimate 

the 2D poses of key points on construction equipment using stacked hourglass and pyramid network 

architectures, and as future work, presented an approach for analyzing operational status utilizing this 

method. While this method employed more detailed information than traditional state analysis based on 

an object's bounding box data, it still faces the limitation of relying on 2D-pixel information. To address 

this limitation, Assadzadeh et al. [14] utilized virtual models to generate 3D pose information for 

excavators and trained the model to estimate the 3D poses of actual site equipment. However, it was 

limited to extracting poses for individual objects only, and the extracted coordinates were not localized, 

failing to account for interactions between different pieces of equipment. 

3. METHODOLOGY  

3.1. Single image-based 3D reconstruction  

In this phase, the objective is to create a 3D model of an object via single image-based 3D 

reconstruction. This process encompasses two principal processes: object segmentation and 3D 

reconstruction. Initially, the object segmentation process segments the object parts from the input image. 

For 3D reconstruction, the presence of background elements behind the object of interest in the input 

image can degrade performance. Therefore, an image cropped to include only the object part, excluding 

the background, is extracted. In this study, the Sam-Track model was employed for the object 

segmentation task. Segment Anything Model (SAM) is a foundation model for image segmentation 

trained on a dataset of 11 million images and 1.1 billion masks, released by the Meta AI research team 

[15]. Sam-Track is an integrated model combining the SAM model with Decoupling features in 

Associating Objects with Transformers (DeAOT) for multi-object tracking [16]. By inserting a video 

and providing text for the desired object, it automatically segments the specified object. In this study, 

segmentation was performed on excavators and dump trucks, and the results are illustrated in Figure 1. 

 

 
Figure 1. Example of object segmentation results 
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Subsequently, the previously obtained cropped image is utilized to reconstruct the object into a 3D 

model. For the 3D reconstruction process, the One-2-3-45 model was employed. This model generates 

multiple images from a single image at various angles using a stable diffusion model and then 

reconstructs these images into 3D using the Neural Radiance Fields (NeRf) model [17]. An example of 

the 3D reconstruction is shown in Figure 2. 

 

 
Figure 2. Example of 3D reconstruction 

 

3.2. 3D visualization  

In this phase, the objective is to localize the 3D models within a single 3D space, reflecting the object's 

location in the image. The 3D models generated through the 3D reconstruction process each possess a 

local coordinate system centered at (0, 0, 0). This is because the segmentation image extracted for 3D 

model creation from the original image results in the loss of the object's positional information within 

the original image. Therefore, to place multiple objects in one space and reflect their original positions 

as observed in the captured footage, a transformation to a global coordinate system is necessary. In this 

study, Unity was utilized as a tool for 3D localization. Unity is a versatile platform for 3D visualization, 

virtual reality, and model simulation, among other applications. Within Unity, users can adjust camera 

settings, facilitating the simulation of actual camera characteristics such as FOV and resolution. The 

layout of the Unity game engine and the experimental setup for this study are depicted in Figure 3. 

 

 
Figure 3. (a) layout of the Unity; (b) experimental setting for this study 

 

Figure 3(a) illustrates the Unity layout, including the camera, objects, and background settings,  where 

θ represents the camera's FOV. The parameters of the virtual camera are adjusted along with the distance 

between the camera and the background to ensure the camera's output matches the actual recorded 

footage.  
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Figure 4 shows the relationship between the camera's FOV in Unity, the distance to the background, 

and the size of the background. The relationship can be represented as shown in Equation 1. In this 

study, the camera's FOV was set to 90°, which accordingly sets the depth at 1,000cm from the camera. 

While the depth can be arbitrarily adjusted according to the user's objectives, the size of the background 

can be determined based on the resolution of the field image. Given that the resolution of the utilized 

site video is 1280 × 720, the background's width is calculated to be 2,000cm according to Equation 1. 

To maintain resolution, the background's height was set at 1,125cm. This depiction is shown in Figure 

3(b), where 𝑥1
′ and  𝑧1

′, and the size of the respective object, can be known from the bounding box 

information extracted during the segmentation process. Furthermore, as the size of the 3D reconstructed 

model can also be obtained in Unity, this information is utilized to calculate the depth value of the 3D 

reconstructed model (i.e., 𝑦1).  

 

 
Figure 4. Relationship between the field of view, width of the background, and depth 

 

tan
𝜃

2
=

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑/2

𝑑𝑒𝑝𝑡ℎ
                                                        (1) 

 

Based on the acquired depth value, 𝑥1 and  𝑧1 are determined through Equation 2. 

 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 3𝐷 𝑚𝑜𝑑𝑒𝑙 ∶  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 =  𝑦1 ∶ 1,000𝑐𝑚                  (2) 

 

3.3. Work status analysis 

At this stage, the objective is to perform status analysis using the 3D information of each object 

situated in the 3D space. The operational status of the equipment is identified based on several factors: 

the distance between each object (𝒅), the change in the centroid of an object (𝒄), and the variation in the 

angle of the 3D bounding boxes between frames (𝒗). In contrast to excavators, which exhibit body 

rotation, rotational considerations were not factored into the analysis of dump trucks, as they lack 

distinct rotational operations. The operational status for both excavators and dump trucks are classified 

into three categories: stationary, moving, and loading. If the distance 𝒅 between objects falls below a 

predefined threshold 𝜶, it is determined that there is interaction between the two objects; otherwise, it 

is deemed that there is no interaction. For instance, in earthwork operations, the presence of both 

excavators and dump trucks is essential for progress, meaning that if no interaction is detected, it would 

be impossible for the operational status of the excavator and dump truck to be classified as loading. The 

detailed criteria for determining the equipment’s operational status under various conditions are 

presented in Tables 1 and 2. 

 

Table 1. Criteria for analyzing operational status in the presence of interaction 

Excavator Dump truck 

Centroid  

change (𝒄) 

Angle  

variation (𝒗) 

Operational  

status 

Centroid  

change (𝒄) 

Operational  

status 

𝒄 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛃 - 
Moving 𝒄 >  𝛃 Moving 

Moving 𝒄 ≤  𝛃 Stationary 

𝒄 ≤  𝛃 

𝒗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛄 Loading - Loading 

𝒗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛄 Stationary 
𝒄 >  𝛃 Moving 

𝒄 ≤  𝛃 Stationary 

  

451



Table 2. Criteria for analyzing operational status in the absence of interaction 

Excavator Dump truck 

Centroid  

change (𝒄) 

Angle  

variation (𝒗) 

Operational  

status 

Centroid  

change (𝒄) 

Operational  

status 

𝒄 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛃 - 
Moving 𝒄 >  𝛃 Moving 

Moving 𝒄 ≤  𝛃 Stationary 

𝒄 ≤  𝛃 

𝒗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛄 Moving 
𝒄 >  𝛃 Moving 

𝒄 ≤  𝛃 Stationary 

𝒗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛄 Stationary 
𝒄 >  𝛃 Moving 

𝒄 ≤  𝛃 Stationary 

 

4. RESULTS AND DISCUSSION  

In this study, experimental data consisted of a one-minute construction site excavation video with a 

resolution of 1280 x 720 at 30 frames per second. Using the Sam-Track model, object segmentation was 

performed on 'excavators' and 'dump trucks' within the video, resulting in 1,800 cropped images 

categorized by equipment type. Examples of the acquired cropped images and the 3D models generated 

using them are shown in Figure 5. 

 

 
Figure 5. Example of the cropped images and the 3D models 

 

As the results indicate, 3D models could generally be well created using only a single image. However, 

in the case of excavators, there were instances where certain parts (e.g., the bucket and arm) were 

missing in the generated models. This issue was identified not as a flaw in the 3D reconstruction model's 

performance but as a consequence of losses incurred during the segmentation process. To address this, 

improving the performance of the segmentation or employing 3D shape completion techniques to 

supplement the missing parts based on a completely generated mesh without losses may be necessary. 

After generating the virtual models, they were placed together within Unity's single 3D virtual 

environment. Subsequently, the 3D information possessed by the objects in the 3D space (e.g., location, 

object's 3D bounding box) was utilized to analyze the operational status of the objects. In this study, to 

distinguish the operational statuses outlined in Tables 1 and 2, the threshold value 𝜶 for determining the 

distance between objects was set to the length of a dump truck, the threshold 𝛃 for changes in the 

centroid was 100 cm/sec, and the rotational angle 𝛄 was set at 15 degrees/sec. Based on these criteria, 

the work status analysis was conducted at intervals of 0.5 seconds (15 frames), with adjustments made 

using the analysis values from one second before to one second after each interval to conduct post-

correction. 

The results demonstrated that the accuracy was 93.33% for excavators and 98.33% for dump trucks, 

with examples of these outcomes illustrated in Figure 6. The proposed method utilizes the distance 

between each object (𝒅), the change in the centroid of an object (𝒄), and the variation in the angle of the 

3D bounding boxes between frames (𝒗) for the status analysis. Based on these values, the working status 

of equipment was analyzed within a 3D virtual space. Consequently, even when observing the same 

object from different camera views and angles, as illustrated in views 1 and 2 of Figure 6, the analysis 

results will remain consistently uniform. Unlike traditional 2D pixel-based status analysis methods, 
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there is no need to repeatedly adjust the threshold values of the ruleset based on camera placement or 

FOV. Additionally, the performance of the developed analysis model is expected to remain relatively 

high across different application sites. 

 

 
Figure 6. Example of work status analysis results 

 

5. CONCLUSION 

In this study, the authors proposed a method for 3D visualization and status analysis of construction 

site objects using 3D reconstruction technology. The experimental results showed feasibility and 

satisfactory performance for the proposed method. This study makes the following contributions. First, 

the proposed method is capable of extracting 3D information of equipment from 2D images using a 

single camera. Consequently, there is no need for specialized cameras like multi-camera setups, depth 

cameras, or location sensors. Second, because state analysis is conducted using 3D spatial information, 

it obviates the need for the manual assumptions required by traditional 2D-pixel information-based 

analysis. For instance, there is no necessity to search for threshold values of rulesets to optimize 

performance based on camera placement. In other words, adjustments to the ruleset are not required 

when applied to different camera views. Finally, the findings of this study can provide meaningful 

insights and new directions for research in construction video-based 3D information analysis. For 

example, utilizing this method enables the acquisition of 3D information for each object and its 

representation within a single virtual space. By representing objects captured from multiple cameras in 

one virtual environment, this approach has the potential to address issues such as ID switch errors and 

occlusion problems. 

Nevertheless, this study still needs to be improved. In this study, the evaluation was limited to a brief 

period and focused on a singular construction site. Future research endeavors must ascertain the 

applicability of the established criteria in ensuring robust performance across extended video sequences 

and datasets collected from diverse construction environments. A performance comparison with existing 

2D pixel-based analysis techniques and addressing the creation of missing 3D models due to poor 

segmentation results are also necessary. 
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