• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.025 seconds

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEED CONTROL USING PRECISION CHEMICAL APPLICATION

  • Lee, Won-Suk;David C. Slaughter;D.Ken Giles
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.802-811
    • /
    • 1996
  • Farmers need alternatives for weed control due to the desire to reduce chemicals used in farming. However, conventional mechanical cultivation cannot selectively remove weeds located in the seedline between crop plants and there are no selective heribicides for some crop/weed situations. Since hand labor is costly , an automated weed control system could be feasible. A robotic weed control system can also reduce or eliminate the need for chemicals. Currently no such system exists for removing weeds located in the seedline between crop plants. The goal of this project is to build a real-time , machine vision weed control system that can detect crop and weed locations. remove weeds and thin crop plants. In order to accomplish this objective , a real-time robotic system was developed to identify and locate outdoor plants using machine vision technology, pattern recognition techniques, knowledge-based decision theory, and robotics. The prototype weed control system is composed f a real-time computer vision system, a uniform illumination device, and a precision chemical application system. The prototype system is mounted on the UC Davis Robotic Cultivator , which finds the center of the seedline of crop plants. Field tests showed that the robotic spraying system correctly targeted simulated weeds (metal coins of 2.54 cm diameter) with an average error of 0.78 cm and the standard deviation of 0.62cm.

  • PDF

Image-based Subway Security System by Histogram Projection Technology

  • Bai, Zhiguo;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.287-297
    • /
    • 2015
  • A railway security detection system is very important. There are many safety factors that directly affect the safe operation of trains. Security detection technology can be divided into passive and active approaches. In this paper, we will first survey the railway security systems and compare them. We will also propose a subway security detection system with computer vision technology, which can detect three kinds of problems: the spark problem, the obstacle problem, and the lost screw problem. The spark and obstacle detection methods are unique in our system. In our experiment using about 900 input test images, we obtained about a 99.8% performance in F- measure for the spark detection problem, and about 94.7% for the obstacle detection problem.

Object detection technology trend and development direction using deep learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.119-128
    • /
    • 2020
  • Object detection is an important field of computer vision and is applied to applications such as security, autonomous driving, and face recognition. Recently, as the application of artificial intelligence technology including deep learning has been applied in various fields, it has become a more powerful tool that can learn meaningful high-level, deeper features, solving difficult problems that have not been solved. Therefore, deep learning techniques are also being studied in the field of object detection, and algorithms with excellent performance are being introduced. In this paper, a deep learning-based object detection algorithm used to detect multiple objects in an image is investigated, and future development directions are presented.

YOLOv7 Model Inference Time Complexity Analysis in Different Computing Environments (다양한 컴퓨팅 환경에서 YOLOv7 모델의 추론 시간 복잡도 분석)

  • Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 2022
  • Object detection technology is one of the main research topics in the field of computer vision and has established itself as an essential base technology for implementing various vision systems. Recent DNN (Deep Neural Networks)-based algorithms achieve much higher recognition accuracy than traditional algorithms. However, it is well-known that the DNN model inference operation requires a relatively high computational power. In this paper, we analyze the inference time complexity of the state-of-the-art object detection architecture Yolov7 in various environments. Specifically, we compare and analyze the time complexity of four types of the Yolov7 model, YOLOv7-tiny, YOLOv7, YOLOv7-X, and YOLOv7-E6 when performing inference operations using CPU and GPU. Furthermore, we analyze the time complexity variation when inferring the same models using the Pytorch framework and the Onnxruntime engine.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

Creepage Distance Measurement Using Binocular Stereo Vision on Hot-line for High Voltage Insulator

  • He, Wenjun;Wang, Jiake;Fu, Yuegang
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.348-355
    • /
    • 2018
  • How to measure the creepage distance of an insulator quickly and accurately is a problem for the power industry at present, and the noticeable concern is that the high voltage insulation equipment cannot be measured online in the charged state. In view of this situation, we develop an on-line measurement system of creepage distance for high voltage insulators based on binocular stereo vision. We have proposed a method of generating linear structured light using a conical off-axis mirror. The feasibility and effect of two ways to solve the interference problem of strong sunlight have been discussed, one way is to use bandpass filters to enhance the contrast ratio of linear structured light in the images, and the other way is to process the images with adaptive threshold segmentation and feature point extraction. After the system is calibrated, we tested the measurement error of the on-line measurement system with a composite insulator sample. Experimental results show that the maximum relative error is 1.45% and the average relative error is 0.69%, which satisfies the task requirement of not more than 5% of the maximum relative error.

Cloud Broadcasting Service Platform (클라우드 방송 서비스 플랫폼)

  • Kim, Hong-Ik;Lee, Dong-Ik;Lee, Jong-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.623-638
    • /
    • 2017
  • Application fields of cloud technologies have been gradually expanded with development of technology development and diversification of services. Cloud technology is used for investment efficiency, operation efficiency and service competitive advantage in digital broadcasting platform. Recently, Cloud broadcasting platform commercialized for UI(User Interface) and data broadcasting in Korea, and broadcasting service competition becomes fierce. Cloud technology of broadcasting provides remove a service dependency hardware resource and software architecture on STB device, and unified operation of user interface and service using cloud server without legacy separating management of STB types. In this paper, we explain application effects in image based cloud broadcasting service platform.

A Runge-Kutta scheme for smart control mechanism with computer-vision robotics

  • ZY Chen;Huakun Wu;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.117-127
    • /
    • 2024
  • A novel approach that the smart control of robotics can be realized by a fuzzy controller and an appropriate Runge-Kutta scheme in this paper. A recently proposed integral inequality is selected based on the free weight matrix, and the less conservative stability criterion is given in the form of linear matrix inequalities (LMIs). We demonstrate that this target information obtained through image processing is subjected to smart control with computer-vision robotic to Arduino, and the infrared beacon was utilized for the operation of practical illustrations. A fuzzy controller derived with a fuzzy Runge-Kutta type functions is injected into the system and then the system is stabilized asymptotically. In this study, a fuzzy controller and a fuzzy observer are proposed via the parallel distributed compensation technique to stabilize the system. This paper achieves the goal of real-time following of three vehicles and there are many areas where improvements were made. Finally, each information is transmitted to Arduino via I2C to follow the self-propelled vehicle. The proposed calculation is approved in reproductions and ongoing smart control tests.

Vision-based Vehicle Detection and Inter-Vehicle Distance Estimation (영상 기반의 차량 검출 및 차간 거리 추정 방법)

  • Kim, Gi-Seok;Cho, Jae-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we propose a vision-based robust vehicle detection and inter-vehicle distance estimation algorithm for driving assistance system. We use the haar-like features of car rear-shadows, as well as the edge features for detecting of vehicles. The use of additional vehicle edge features greatly reduces the false-positive errors in the vehicle detection. And, after analyzing the conventional two inter-vehicle distance estimation methods: the location-based and the vehicle width-based, an improved inter-vehicle distance estimation algorithm which has the advantage of both method is proposed. Several experimental results show the effectiveness of the proposed method.