본 논문에서는 매개변수가 더 적고, 빠르게 추정 가능한 MobileViT 기반 모델을 통해 사람 자세 추정 과업을 수행할 수 있는 모델을 제안한다. 기반 모델은 합성곱 신경망의 특징과 Vision Transformer의 특징이 결합한 구조를 통해 경량화된 성능을 입증한다. 본 연구에서 주요 매커니즘이 되는 Transformer는 그 기반의 모델들이 컴퓨터 비전 분야에서도 합성곱 신경망 기반의 모델들 대비 더 나은 성능을 보이며, 영향력이 커지게 되었다. 이는 사람 자세 추정 과업에서도 동일한 상황이며, Vision Transformer기반의 ViTPose가 COCO, OCHuman, MPII 등 사람 자세 추정 벤치마크에서 모두 최고 성능을 지키고 있는 것이 그 적절한 예시이다. 하지만 Vision Transformer는 매개변수의 수가 많고 상대적으로 많은 연산량을 요구하는 무거운 모델 구조를 가지고 있기 때문에, 학습에 있어 사용자에게 많은 비용을 야기시킨다. 이에 기반 모델은 Vision Transformer가 많은 계산량을 요구하는 부족한 Inductive Bias 계산 문제를 합성곱 신경망 구조를 통한 Local Representation으로 극복하였다. 최종적으로, 제안 모델은 MS COCO 사람 자세 추정 벤치마크에서 제공하는 Validation Set으로 ViTPose 대비 각각 5분의 1과 9분의 1만큼의 3.28GFLOPs, 972만 매개변수를 나타내었고, 69.4 Mean Average Precision을 달성하여 상대적으로 우수한 성능을 보였다.
최근 컴퓨터 비전 분야에서 Transformer를 도입한 연구가 활발히 연구되고 있다. 이 모델들은 Transformer의 구조를 거의 그대로 사용하기 때문에 확장성이 좋으며 large 스케일 학습에서 매우 우수한 성능을 보여주었다. 하지만 Transformer를 적용한 비전 모델은 inductive bias의 부족으로 학습 시 많은 데이터와 시간을 필요로 하였다. 그로 인하여 현재 많은 Vision Transformer 개선 모델들이 연구되고 있다. 본 논문에서도 Vision Transformer의 문제점을 개선한 Clustering CoaT 모델을 제안한다.
본 논문은 Vision Transformer를 기반으로 하는 Video Classification의 성능을 개선하는 방법으로 fine-tuning를 적용한 신경망을 제안한다. 최근 딥러닝 기반 실시간 비디오 영상 분석의 필요성이 대두되고 있다. Image Classification에 사용되는 기존 CNN 모델의 특징상 연속된 Frame에 대한 연관성을 분석하기 어렵다는 단점이 있다. 이와 같은 문제를 Attention 메커니즘이 적용된 Vistion Transformer와 Non-local 신경망 모델을 비교 분석하여 최적의 모델을 찾아 해결하고자 한다. 또한, 전이 학습 방법으로 fine-tuning의 다양한 방법을 적용하여 최적의 fine-tuning 신경망 모델을 제안한다. 실험은 UCF101 데이터셋으로 모델을 학습시킨 후, UTA-RLDD 데이터셋에 전이 학습 방법을 적용하여 모델의 성능을 검증하였다.
얼굴 연령 분류 기법은 신원 확인 시스템 고도화, 유동 인구 통계 자동화 시스템 구축, 연령 제한 콘텐츠 관리 시스템 고도화 등 다양한 분야에 적용할 수 있는 확장 가능성을 가진다. 넓은 확장 가능성을 가지는 만큼 적용된 시스템의 안정성을 위해서는 얼굴 연령 분류 기법의 높은 정확도는 필수적이다. 따라서, 본 논문에서는 Vision Transformer(ViT) 기반 분류 알고리즘의 얼굴 연령 분류 성능을 비교 분석한다. ViT 기반분류 알고리즘으로는 최근 널리 사용되고 있는 ViT, Swin Transformer(ST), Neighborhood Attention Transformer(NAT) 세 가지로 선정하였으며, ViT의 얼굴 연령 분류 정확도 65.19%의 성능을 확인하였다.
Transformers are the most famous deep learning models that has achieved great success in natural language processing and also showed good performance on computer vision. In this survey, we categorized transformer-based models for computer vision, particularly object detection tasks and perform comprehensive comparative experiments to understand the characteristics of each model. Next, we evaluated the models subdivided into standard transformer, with key point attention, and adding attention with coordinates by performance comparison in terms of object detection accuracy and real-time performance. For performance comparison, we used two metrics: frame per second (FPS) and mean average precision (mAP). Finally, we confirmed the trends and relationships related to the detection and real-time performance of objects in several transformer models using various experiments.
In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.
온라인 거래가 증가하면서 의류 이미지는 소비자의 구매 결정에 큰 영향을 미치게 되었다. 의류 소재에 대한 이미지 정보의 중요성이 강조되고 있으며, 의류 이미지를 분석하여 사용된 소재를 파악하는 것은 패션 산업에 있어서 중요하다. 의류에 사용된 텍스타일의 소재는 육안으로 식별하기 어렵고, 분류 작업에도 많은 시간과 비용이 소모된다. 본 연구는 딥러닝 알고리즘을 기반으로 의류 이미지로부터 텍스타일의 소재를 분류하고자 하였다. 소재를 분류함으로써 의류 생산 비용을 절감하고, 제조공정의 효율성을 증대하는데 도움이 되며 소비자에게 특정 소재의 제품을 추천하는 AI 서비스에 기여할 수 있다. 의류 이미지를 분류하기 위해 머신비전 기반의 딥러닝 알고리즘 ResNet과 Vision Transformer를 이용하였다. 760,949장의 이미지를 수집하였고, 비정상 이미지를 검출하는 전처리 과정을 거쳤다. 최종적으로 총 167,299장의 의류 이미지와 섬유라벨 19개, 직물라벨 20개를 사용하였다. ResNet과 Vision Transformer를 사용해서 의류 텍스타일의 소재를 분류하였으며 알고리즘 성능을 Top-k Accuracy Score 지표를 통해 비교하였다. 성능을 비교한 결과, ResNet 보다 Vision Transformer 알고리즘이 더 우수하였다.
NLP 분야에서 적극 활용되기 시작한 Transformer 모델을 Vision 분야에서 적용하기 시작하면서 object detection과 segmentation 등 각종 분야에서 기존 CNN 기반 모델의 정체된 성능을 극복하며 향상되고 있다. 또한, label 데이터 없이 이미지들로만 자기지도학습을 한 ViT(Vision Transformer) 모델을 통해 이미지에 포함된 여러 중요한 객체의 영역을 검출하는 saliency map을 추출할 수 있게 되었으며, 이로 인해 ViT의 자기지도학습을 통한 object detection과 semantic segmentation 연구가 활발히 진행되고 있다. 본 논문에서는 ViT 모델 뒤에 classifier를 붙인 모델에 일반 학습한 모델과 자기지도학습의 pretrained weight을 사용해서 전이학습한 모델의 시각화를 통해 각 saliency map들을 비교 분석하였다. 이를 통해, 클래스 분류 학습 기반 전이학습이 transformer의 saliency map에 미치는 영향을 확인할 수 있었다.
Bone age assessment is a crucial task in pediatric radiology for assessing growth and development in children. In this paper, we explore the potential of Vision Transformer, a state-of-the-art deep learning model, for bone age assessment using X-ray images. We generate heatmap outputs using a pre-trained Vision Transformer model on a publicly available dataset of hand X-ray images and show that the model tends to focus on the overall hand and only the bone part of the image, indicating its potential for accurately identifying the regions of interest for bone age assessment without the need for pre-processing to remove background noise. We also suggest two methods for extracting the region of interest from the heatmap output. Our study suggests that Vision Transformer holds great potential for bone age assessment using X-ray images, as it can provide accurate and interpretable output that may assist radiologists in identifying potential abnormalities or areas of interest in the X-ray image.
쌀 수확량 감소에 크게 영향을 주는 것은 집중호우나 태풍에 의한 도복 피해이다. 도복 피해 면적 산정 방법은 직접 피해 지역을 방문하는 현장 조사를 기반으로 육안 검사 및 판단하여 객관적인 결과 획득이 어렵고 많은 시간과 비용이 요구된다. 본 논문에서는 무인 항공기로 촬영된 RGB 영상을 Vision Transformer 기반 Segformer을 활용한 벼 도복 영역 추정 및 진단을 제안한다. 제안된 방법은 도복, 정상, 그리고 배경 영역을 추정하고 종자관리요강 내 벼 포장 검사를 통해 도복률을 진단한다. 진단된 결과를 통해 벼 도복 피해 분포를 관찰할 수 있게 하며, 정부 보급종 포장 검사에 활용할 수 있다. 본 연구의 벼 도복 영역 추정 성능은 평균 정확도 98.33%와 mIoU 96.79%의 성능을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.