• Title/Summary/Keyword: viscous flows

Search Result 261, Processing Time 0.024 seconds

Flow Characteristics in a Multistage Axial Turbine (다단 축류형 터빈의 유동 특성 해석)

  • Um InSik;Park Jun Young;Baek Je Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.149-154
    • /
    • 2000
  • The flows through a turbomachinery tend to be extremely complex due to its inherent unsteady and viscous phenomena. A good analysis of the flows associated with rotor/stator interactions in turbomachinery will be great help in design stage. In this investigation, unsteady viscous flow structurts through one and half stage of UTRC large scale rotating axial turbine are analysed. The numerical data was compared with experimental data and showed good agreement.

  • PDF

Computation of Viscous Flows around a Ship with a Drift Angle and the Effects of Stern Hull Form on the Hydrodynamic Forces (사항중인 선체 주위의 점성유동 계산 및 조종유체력에 선미형상이 미치는 영향)

  • Sun-Young Kim;Yeon-Gyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • RANS solver has been developed to solve the flows past a ship with a drift angle. The solver employs a finite volume method for the spatial discretization and Euler implicit method for the time integration. Turbulent flows are simulated by Spalart-Allmaras one-equation model. Developed solver is applied to analyze the hydrodynamic forces and flows of two tankers with a same forebody but different afterbodies. The computed flows and hydrodynamic forces are compared with the measured flows and captive model test data. The computed results show good agreements with experimental data and show clearly the effects of stern hull form on the hydrodynamic forces and the flows.

  • PDF

A Comparison of a Lagrangian Vortex Method with a Finite Volume Method for the Vorticity-Velocity Formulation. (와도-속도 정식화에서 Lagrangian 보오텍스법과 유한체적법의 비교)

  • Kim Kwang-Soo;Lee Seung-Jae;Suh Jung-Chun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47-52
    • /
    • 2002
  • We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.

  • PDF

Computational Analysis of EFP Design (EFP 설계의 전산 해석)

  • 최서원;강호철;홍종태;이상길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.110-116
    • /
    • 1999
  • Supersonic flows over an EFP(explosively formed projectile) have been calculated by a high-order conservation law scheme and two-layer $$textsc{k}$-{\varepsilon}$ model on hybrid viscous unstructured mesh. To verify the accuracy and robustness of the developed code, two basic flows about airfoils are computed and results are compared with existing experimental data and computational results. The comparisons confirm the validity of the code and justify our use for such a highly supersonic and viscous flow over a blunt body. Complex flow features of supersonic flows over an EFP are clearly captured and show agreements with the flow visualization. From the interaction of oblique shocks near the surface of flare, flow structures, that were not identified by previous experimental results, are discovered as a result of present computation.

  • PDF

Incompressible Viscous Analysis on Unstructured Meshes using Artificial Compressibility Method (가압축성 기법을 이용한 비정렬 격자상에서의 비압축성 점성해석)

  • Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.113-117
    • /
    • 1995
  • Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by artificial compressibility method. The governing equations are discretized by a cell-centered based finite-volume method. and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also validated with benchmark solution and experiment.

  • PDF

The Early Stage Behavior of Unsteady Viscous Flows past an Impulsively Started Square Cylinder (급 출발하는 정방실린더 후류의 비정상 점성유동의 초기거동)

  • Jin, Dong-Sik;Jung, Jae-Hoon;Ahn, Cheol-O;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.259-264
    • /
    • 2001
  • High-resolution simulations using vortex methods have been performed for simulating unsteady viscous flows around an impulsively started square cylinder. In order to investigate the phenomenon from laminar to transition flow, simulations are performed for Reynolds numbers 25, 50, 150 and 250. At extremely low Reynolds number, flow around a square cylinder is known to separate at the trailing edges rather than the leading edges. With an increase of Reynolds number, the flow separation at the leading edges will be developed. The main flow characteristics of developing recirculation region and separations from leading and trailing edges are studied with the unsteady behavior of the wake after the cylinder starts impulsively. A notable change in the flow evolution is found at Re=150, that is, it is shown that the flow separations begin at both leading and trailing edges of the square cylinder. On the other hand, when Re=250, the strong secondary vorticity from the rear surfaces of the square cylinder increases the drag coefficient as the primary vortex layer is pushed outwards. The comparisons between results of the present study and experimental data show a good consistency.

  • PDF

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

Numerical Analysis of Viscous Flows on Unstructured Grids Using the Optimal Method of Strongly Implicit Procedure (비정렬 격자계에서 S.I.P. 최적화 방법을 이용한 점성유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.196-202
    • /
    • 2012
  • In this study, numerical analysis of viscous flows is carried out based on the unstructured grid. There exist some difficulties in expressing and computing numerical derivatives on the unstructured grid due to lack of the structured characteristics. The general computer algorithms are developed to perform numerical derivatives easily and extended to be applicable to various geometries composed of hybrid meshes. And the optimal method of strongly implicit procedure is newly contrived to accelerate the rate of convergence in solving the pressure Poisson equation. To verify numerical schemes, the driven cavity problems of 2 and 3 dimension are simulated. The numerical results are compared with others and our numerical schemes are shown to be valid.

ACCURACY AND CONVERGENCE OF THE LOCAL PRECONDITIONING ON THE HIGH ASPECT RATIO GRIDS (가로세로비가 큰 격자에서 국소 예조건화 기법의 정확성 및 수렴성)

  • Lee, J.E.;Kim, Y.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.269-276
    • /
    • 2009
  • The local preconditioning method has both robust convergence and accurate solutions by using local flow properties for parameters in the preconditioning matrix. Preconditioning methods have been very effective to low speed inviscid flows. In the viscous and turbulent flows, deterioration of convergence should be overcame on the high aspect ratio grids to get better convergence and accuracy. In the present study, the local time stepping and min-CFL/max-VNN definitions are applied to compare the results and we propose the method that switches between two methods. The min-CFL definition is applied for inviscid flow problems and the min-CFL/max-VNN definition is implemented to viscous and turbulent flow problems.

  • PDF