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Incompressible Viscous Analysis on Unstructured Meshes
using Artificial Compressibility Method
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Young J. Moon

Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-
dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by
artificial compressibility method. The governing equations are discretized by a cell-centered based finite-
volume method, and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial
dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time
stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also
validated with benchmark solution and experiment.

1. Introduction

Recently attentions have been paid on unstructured algorithms in applications of calculating flows in complex
geometries with automatic triangufar mesh generation. On the other hand, there have been some issuses also,
concerning on accuracies and convergences of the unstructured method. Some research efforts have been made
for the validations of the unstructured schemes especially in high Reynolds number compressible flows. The
present study is primarily focused on incompressible flows from low Reynolds number to moderate Reynolds
numbers.

2. Mathematical Formulations

2.1 Governing Equations and Artificial Compressibility Method

Among the various methods in handling the incompressible Navier-Stokes equations, the artificial
compressibility method is considered. This method was originally suggested by Chorin[1] and also extended by
Kwak and Chang[2].

The axisymmetric incompressible Navier-Stokes equations are formulated in a time-marching hyperbolic form
by artificial compressibility method as follows;
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and‘/E is an artificial speed of sound such that p=f3p. Eq. (1) returns to a two dimensional form by

excluding the source vectors A and H,, and the last row in the equation.
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2.2 Unstructured Finite Volume Method

A cell-centered based finite-volume form of discretization is applied by a volume integral to Eq. (1) on
unstructured triangular meshes. Inviscid numerical fluxes at a cell face are defined by averaging of two nested
cell values. Viscous fluxes are determined by two steps. First, gradients at a cell center are evaluated by a
contour integral of the pre-calculated cell face values. Then the gradients at a cell face are averaged berween
two nested cells. Here an area-weighted rule is used in averagings. The numerical stencil of the present scheme
is shown in Fig. 1. Also the fourth order artificial dissipation in a form suggested in Ref. [3] was used to ensure
the stability of the centered scheme. The resulting equations are written in a discrete form as
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where i and j indicate the cell and its faces and (i) is the mapping relation between them. Also V; denotes an
area of the ith cell.
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Fig. 1 10 points numerical stencil of the present scheme

2.3 4 Stage Runge-Kutta Method
An explicit k-stage Runge-Kutta method is used for the time integration, shown as
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where o, represents the kth stage coefficient and R is the residual. The standard stage coefficients and the
approximate maximum CFL number are used.
Also the local time stepping and implicit residual smoothing was used to increase the convergence to the

steady-state. The original residual R is smoothed by solving the implicit equations E: R,,+gV2 R, Where v? R
represents the undivided Laplacian of the residuals, and g is a smoothing coefficient. A unity is used for ¢,
and a point Gauss-Seidel method is used with 2 or 3 iterations to obtain E In the study, the maximum CFL

numbers are approximately doubled by using the implicit resdiual smoothing, and the CFL number of 5.5 is
used for 4 stage Runge-Kutta method.

3. Numerical Results and Discussion

First, a lid-driven cavity flow in a rectangle is considered for Re=400, 1000, and 5000. Triangular meshes are
generated by halving the quadrilaterals of a non-uniform structured grid, in order to have a consistency in
comparing with the structured grid solutions. Here the equivalent mesh sizes of 30x30, 40x40, and 50x50 are
used for the Reynolds numbers of 400, 1000, and 5000, respectively. Fig. 2 shows a non-uniform grid of 5000
elements (equivalent to 50x50 structured grid) and the stream function contours for Re=5000. Also the
centerline u-velocity profiles of the present computation are compared with benchmark solutions (Ghia et al.[4],
256x256 grid) in Fig. 3. Agreement is generally quite good. A more detailed comparison is summarized in
Table 1. The minimum u-velocity values and locations, and also the stream function values and locations of the
primary and secondary vortices are compared. Agreement is excellent for Re=400 and 1000, although a little
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discrepancy is observed for Re=5000.

The second case is a lid-driven cavity flow in a rectangle with three cylinders inside located diagonally. This is
the case of a multi-body geometry, for which the unstructured mesh generation has advantages over the
structured one. Fig. 4(a) shows the triangular meshes of 3616 elements and 1891 nodes generated by advancing
front method[5]. For Re=100, 400, 800, and 2000, convergences are shown in Fig. 4(b) and (c). It seems that,
with relatively a little bit irregularly distributed triangular meshes, practically dependable convergences are
achieved. Streamline patterns of the flows are also well represented in Fig. 5(a)-(d) for each Reynolds number.
Due to the results of the interaction with cylinders, the positions and deformed structures of the lid-generated
primary vortex are quite differentiable among various Reynolds numbers.

The last case considered is a rotating lid-driven cylindrical cavity flow, where the Reynolds number based on a
cylinder radius and an angular velocity is 1854, and a cylinder aspect ratio /R is 2. An axisymmetric vortex
breakdown at the rotation axis was observed in the experiment of Escudier{6]. Fig. 6 shows a convergence of
the case, in which a transient vortex breakdown lasts a quite long period of time and a steady state was estab-
lished at the iteration of 20000. The stream function contours in Fig. 7(a) are computed on triangular meshes
with an equivalent size of 80x50. It has a good resemblance to the experiment shown in Fig. 7(b), comparing
the location, shape and size of the bubble; W/H & s/H = 0.19 & 0.16 (present), 0.21 & 0.16 (exp.), and 0.20 &
0.14 (Ref. [7]), (h: bubble location from bottom, s: bubble size, and H: cylinder height).

Based on validations for three different types of incompressible laminar recirculating cavity flows, present
numerical formulation seems to have a fairly competent accuracy and convergence property, compared with
other incompressible Navier-Stokes solvers.
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Fig 2. (a) equivalent mesh 50x50, (b) stream function contours, Re=5000.
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Fig 3. Centerline u-velocity comparison with benchmark solution: (a) equivalent mesh
30x30, Re=400, (b) 40x40, Re=1000, (c) 50x50, Re=5000 (from R to L).

on vertical primary vortex secondary vortex
centerline _(bottom right
Unin_| Ymin A4 X y v X y
Re=400 | presen - 0.2767 - 0.553 | 0.608 | 0.633x10- { 0.892 | 0.1342
Ghia - 0.2770 - 0.642x10"
Re=1000 | presen - 0.1737 - 0.532 | 0.566 | 0.144x10" | 0.866 | 0.1100
Ghia - 0.1719 - 0.531 | 0.562 | 0.175x10" | 0.859 | 0.1094
Re=5000 | presen - 0.0796 - 0.516 ] 0.536 | 0.313x10" | 0.805 | 0.0711
Ghia - 0.0703 - 0.511 | 0.535 | 0.308x10" | 0.808 | 0.0742

Z
Table 1. Comparison of solutions for Re=400, 1000, and 5000.
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Fig. 4 Cavity flow with multiple cylinders: (a) mesh: 3616 elements, 1891 nodes,
convergences: (b) u-momentum, (c) min stream function.

(a) Re=100 (d) Re=2000

Fig 5. Streamline patterns for various Reynolds numbers.
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Fig. 6 Convergence of a cylindrically driven cavity flow

(b)

Fig. 7 (a) present computation, (b) experiment (by M. P. Escudier),
Re=1854, HR=2.
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