• Title/Summary/Keyword: viscous diffusion

Search Result 74, Processing Time 0.031 seconds

Numerical Analysis of Unsteady Viscous Flow through Ship's Propulsion Mechanism of Weis-Fogh Type by Advanced Vortex Method (최신 와법에 의한 Weis-Fogh형 선박추진기구의 비정상 점성 흐름의 수치해석)

  • Ro, Ki-Deok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1407-1412
    • /
    • 2004
  • The velocity and pressure fields of a ship's propulsion mechanism of Weis-Fogh type are studied by advanced vortex method. The wing of NACA0010 type and the channel are approximated by a finite of source and vortex panels, and the free vortices are introduced from the surface of their bodies. The viscous diffusion of fluid is represented by the core-spreading method. The velocity field is calculated on the basis of Biot-Savart law and the pressure field is calculated from the integration equation formulated by Uhlman. The flow fields of this propulsion mechanism are unsteady and complex, but the flow fields are clarified by numerical simulation.

  • PDF

Simulations of the early wake behavior induced by an impulsively started a semicircualr cylinder (급 출발하는 반원형 실린더에 의한 초기 후류거동의 시뮬레이션)

  • Cho Jiyoung;Lee Sanghwan;Jin Dongsik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.349-352
    • /
    • 2002
  • The time-development of the wake vortices of the unsteady viscous flow past a semicircular cylinder is simulated using the vortex particle methods for direct numerical simulations(DNS). The early wake behaviour of the flow behind an impulsively started a semicircualr cylinder is evaluated for a range of Reynolds numbers between 60 and 200 with opposite body configurations respectively. The diffusion scheme based on the particle strength exchange(PSE) is used to account far the viscous effect accurately. And the vorticity generation algorithm to enforce the no-slip boundary conditions is employed. In order to redistribute particles efficiently on the distorted Lagrangian grid the particle distribution technique is adaptively revised, while maintaining the uniform resolution. The results of the simulations are compared to other experimental results.

  • PDF

Radiation Hydrodynamics of 2-D Accretion Disks

  • OKUDA TORU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.251-254
    • /
    • 2001
  • To examine the structure and dynamics of thick accretion disks, we use a two-dimensional viscous hydrodynamic code coupled with radiation transport. The $\alpha$-model and the full viscous stress-tensor description for the kinematic viscosity are used. The radiation transport is treated in the gray, flux-limited diffusion approximation. The finite difference methods used are based on an explicit-implicit method. We apply the numerical code to the Super-Eddington black-hole model for SS 433.@The result for a very small viscosity parameter a reproduces well the characteristic features of SS 433, such as the relativistic jets with $\~$0.26c, the small collimation degree of the jets, the mass-outflow rate of ${\ge}5{\times}10^{-7}M{\bigodot}yr^{-1}$, and the formation of the X-ray iron emission lines.

  • PDF

A Comparison of a Lagrangian Vortex Method with a Finite Volume Method for the Vorticity-Velocity Formulation. (와도-속도 정식화에서 Lagrangian 보오텍스법과 유한체적법의 비교)

  • Kim Kwang-Soo;Lee Seung-Jae;Suh Jung-Chun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47-52
    • /
    • 2002
  • We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.

  • PDF

Stability of Inclined Premixed Planar Flames (기울어진 예혼합 평면화염의 안정성)

  • Lee, Dae-Keun;Kim, Moon-Uhn;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

Stability of Inclined Premixed Planar Flames (기울어진 예혼합 평면화염의 안정성)

  • Lee, Dae-Keun;Kim, Moon-Uhn;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow (무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향)

  • Lee Chang Ho;Park Seung O
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.