• 제목/요약/키워드: viscous

검색결과 2,151건 처리시간 0.032초

미소기포 분할 분출장치에 의한 점성 마찰저항 감소화 연구 (A Study on the Viscous Frictional Drag Reduction by a Split Microbubble Injection System)

  • 권순영;김시영;홍봉기
    • 수산해양교육연구
    • /
    • 제10권1호
    • /
    • pp.63-68
    • /
    • 1998
  • The microbubble splits injection system are improved for the enhancement efficiency of viscous frictional drag reduction. It was confirmed that the experimental results is effective more than Mercle's[7] using the present system in the comparisons. And the new experimental equation is derived to get viscous frictional drag reduction useful for the present experimental data. The new experimental equation approaches Mercle's[7] experimental data wel.

  • PDF

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.

Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation

  • Cui, Chun Y.;Meng, Kun;Wu, Ya J.;Chapman, David;Liang, Zhi M.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.609-618
    • /
    • 2018
  • A new mechanical model for predicting the vibration of a pipe pile embedded in longitudinally layered visco-elastic media with radial inhomogeneity is proposed by extending Novak's plain-strain model and complex stiffness method to consider viscous-type damping. The analytical solutions for the dynamic impedance, the velocity admittance and the reflected signal of wave velocity at the pile head are also derived and subsequently verified by comparison with existing solutions. An extensive parametric analysis is further performed to examine the effects of shear modulus, viscous damping coefficient, coefficient of disturbance degree, weakening or strengthening range of surrounding soil and longitudinal soft or hard interbedded layer on the velocity admittance and the reflected signal of wave velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions provide extensive possibilities for practical application compared with previous related studies.

Strategic width-wise arrangement of viscous dampers in steel buildings under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.225-238
    • /
    • 2021
  • Supplemental passive dampers are widely employed to improve the structural performance of buildings under seismic excitations. Nevertheless, the added damping could be counter-productive if the axial forces induced by the damper reaction forces are not routed properly in the columns. A few researchers engaged to optimize the width-wise damper arrangement to improve the delivered path of the axial column forces. However, most of these studies are limited under the design-based seismic level and few of them has evaluated the collapse performance of buildings under strong earthquakes. In this paper, the strategic width-wise placement method of viscous dampers is explored regarding the building performance under collapse state. Two realistic steel buildings with different storeys are modelled and compared to explore higher mode effects. Each building is designed with four different damper arrangement scenarios based on a classic damper distribution method. Both a far-fault and a near-fault seismic environment are considered for the buildings. Incremental Dynamic Analysis (IDA) is performed to evaluate the probability of collapse and the plastic mechanism of the retrofitted steel buildings.

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

점성 감쇠기를 이용한 인접 비대칭 강성 구조물의 내진보강 최적설계 (Optimal Seismic Reinforcement Design of Adjacent Asymmetric-Stiffness Structures with Viscous Dampers)

  • 성은희
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.60-70
    • /
    • 2022
  • This paper proposes an optimal design method of a seismic reinforcement system for the seismic performance of adjacent asymmetric-stiffness structures with viscous dampers. The first method considers plan asymmetry for efficient seismic reinforcement, and evaluates the seismic performance of optimal design applied to two cases of modeling: adjacent stiffness-asymmetric structures and adjacent stiffness-symmetric structures. The second method considers the response of asymmetric structures to derive the optimal objective function, and evaluates seismic efficiency of the objective function applied to two cases of responses: horizontal displacement and torsion. Numerical analyses are conducted on 7- and 10-story structures with a uni-asymmetric-stiffness plan using six cases of historic earthquakes, normalized to 0.4g. The results indicate that the seismic performance is excellent as modeled by adjacent asymmetric-stiffness structures and how much horizontal displacement is applied as the objective function.

Structual Design of a Building with High Damping Provided by Deformation Amplification Mechanisms and Tuned Viscous Mass Damper

  • Mizuki Shigematsu;Takaaki Udagawa;Satoru Nagase
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.215-224
    • /
    • 2023
  • This paper presents the structural design and response control system of the JR MEGURO MARC building, a 70 meters high office building with steel structure located in Tokyo (Figure 1). In order to achieve high earthquake resistance and useable office space, this building integrates a centralized response control system with deformation amplification mechanisms and tuned viscous mass dampers on the lower floor. Moreover, buckling-restrained braces (BRB) are installed on the upper floors to increase the effectiveness of centralized response control system and to reduce damage of the main frames in the event of a major earthquake. It features an efficient centralized response control system by amplifying the deformation of the dampers without creating a soft story.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

파랑과 조류에 의한 부유식 수직 실린더 구조물에 작용하는 평균 점성 표류력 (Viscous Mean Drift Forces on a Floating Vertical Cylinder in Waves and Currents)

  • 신동민;문병영
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.503-509
    • /
    • 2020
  • Semi-submergible, Tension-leg Platform 등과 같은 부유식 해양구조물에서 점성효과를 고려하여 항력에 기인한 점성 표류력를 구하는 것은 최근까지 잘 고려되지 않았던 설계 요소이다. 본 논문에서는 파랑과 조류를 고려한 부유식 수직 실린더 구조물에 작용하는 평균 점성 표류력에 대한 해석적 수식 해를 구하였다. 기존의 고정된 실린더에서 구한 방식과 같이 실린더의 수면 위로 나온 부분을 Splash Zone, 수면 아래의 잠긴 부분을 Submerged Zone 으로 구분하였다. 파랑이 존재하는 경우는 Splash zone 에서만 고려되고, 파랑과 조류를 포함한 경우는 Splash Zone 과 Submerged Zone 모두에서 각각 식을 구하였다. 기존 연구의 RAO 결과값을 활용하여 고정된 실린더에 작용하는 평균 점성 표류력의 계산 결과와 비교하였다. Splash Zone에서 파랑만 존재하는 경우를 제외하고 대부분의 주파수 영역 대에서 부유식 실린더에 작용하는 평균 점성 표류력의 크기가 상대적으로 고정된 실린더에 작용하는 표류력의 크기보다 크게 나오는 것을 볼 수 있으며, 특히 조류가 상대적으로 더 중요하게 고려되는 경우 더 크게 증가함을 알 수 있었다. 따라서, 본 연구 결과를 통해 부유식 해양 구조물 설계시 항력으로 인한 점성 표류력의 추론을 제시할 수 있다.