Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.
This paper provides a simple numerical method to determine the optimal parameters of tuned mass damper (TMD) and viscoelastic dampers (VEDs) in frame structure for wind vibration control considering the soil-structure interation (SSI) effect in frequency domain. Firstly, the numerical model of frame structure equipped with TMD and VEDs considering SSI effect is established in frequency domain. Then, the genetic algorithm (GA) is applied to obtain the optimal parameters of VEDs and TMD. The optimization process is demonstrated by a 20-storey frame structure supported by pile group for different soil conditions. Two wind resistant systems are considered in the analysis, the Structure-TMD system and the Structure-TMD-VEDs system. The example proves that this method can quickly determine the optimal parameters of energy dissipation devices compared with the traditional finite element method, thus is practically valuable.
Geomaterials such as soil and rock are composed of discrete elements of microstructures with different grains and microcracks. The studies of these microstructures are of increasing interest in geophysics and geotechnical engineering relating to underground space development We first show experimental results undertaken for direct observation of microcrack initiation and propagation by using a newly developed experimental system, and next a homogenization method for treating a viscoelastic behavior of a polycrystalline rock.
Jeon, Min-Kyung;Kwon, Tae-Hyuk;Park, Jin-Sung;Shin, Jennifer H.
Geomechanics and Engineering
/
v.12
no.5
/
pp.849-862
/
2017
With growing interests in using bacterial biopolymers in geotechnical practices, identifying mechanical properties of soft gel-like biopolymers is important in predicting their efficacy in soil modification and treatment. As one of the promising candidates, dextran was found to be produced by Leuconostoc mesenteroides. The model bacteria utilize sucrose as working material and synthesize both soluble and insoluble dextran which forms a complex and inhomogeneous polymer network. However, the traditional rheometer has a limitation to capture in situ properties of inherently porous and inhomogeneous biopolymers. Therefore, we used the particle tracking microrheology to characterize the material properties of the dextran polymer. TEM images revealed a range of pore size mostly less than $20{\mu}m$, showing large pores > $2{\mu}m$ and small pores within the solid matrix whose sizes are less than $1{\mu}m$. Microrheology data showed two distinct regimes in the bacterial dextran, purely viscous pore region of soluble dextran and viscoelastic region of the solid part of insoluble dextran matrix. Diffusive beads represented the soluble dextran dissolved in an aqueous phase, of which viscosity was three times higher than the growth medium viscosity. The local properties of the insoluble dextran were extracted from the results of the minimally moving beads embedded in the dextran matrix or trapped in small pores. At high frequency (${\omega}>0.2Hz$), the insoluble dextran showed the elastic behavior with the storage modulus of ~0.1 Pa. As frequency decreased, the insoluble dextran matrix exhibited the viscoelastic behavior with the decreasing storage modulus in the range of ${\sim}0.1-10^{-3}Pa$ and the increasing loss modulus in the range of ${\sim}10^{-4}-1\;Pa$. The obtained results provide a compilation of frequency-dependent rheological or viscoelastic properties of soft gel-like porous biopolymers at the particular conditions where soil bacteria produce bacterial biopolymers in subsurface.
PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.
The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.
This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.
For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.
A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.
Proceedings of the Computational Structural Engineering Institute Conference
/
1999.10a
/
pp.257-266
/
1999
This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.