• Title/Summary/Keyword: viscoelastic matrix

Search Result 66, Processing Time 0.023 seconds

Study on PLLA Alloys with Impact Modifier and Talc (충격 보강제와 탈크를 이용한 PLLA 얼로이 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk;Jang, Mi-Ok;Hong, Chae-Hwan
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • In this work, PLLA/EGMA blends were prepared by melt blending of biodegradable Poly-L-lactic acid(PLLA) with Poly(ethylene-co-glycidyl methacrylate)(EGMA) and Engage as impact modifiers by twin screw extruder. Blend compositions of PLLA/Impact modifier blends were 100/0, 75/25, 50/50, 25/75 and 0/100, respectively. Also, Talc was added to 3 PLLA rich phases on PLLA/EGMA blends. The morphology, viscoelastic/mechanical properties were characterized by FESEM, DMA, UTM and Izod impact tester. DMA and Izod impact test data showed that storage modulus at room temperature with increasing EGMA and Engage contents decreased, and impact strength increased. However, storage modulus at room temperature increased by adding talc. From FESEM image, we observed that domain phase was well dispersed into matrix. Although the tensile strength and flexural modulus were decreased with increasing the content of EGMA and Engage in them, they could be supplemented by adding talc.

Mechanical Properties of Organoclay filled NR/BR Blends (Organoclay로 보강된 NR/BR Blends의 기계적 특성)

  • Kim, W.;Kim, S.K.;Kim, S.K.;Chuug, K.H.;Byun, J.Y.
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.51-60
    • /
    • 2004
  • The cure, viscoelastic and mechanical characteristics of organoclay filled NR/BR blends were studied and compared with the properties of carbon black and silica filled NR/BR blends. The nanocomposites with extensive exfoliation state can be fabricated by a solution mixing method. In the composites, the amount of filler content was fixed to 10 phr. Degree of intercalation and exfoliation was characterized by X-ray diffraction (XRD). XRD results indicated exfoliation of the silicate layers into the rubber matrix. While the degree or intercalation and exfoliation is lowered by the conventional mixing method, extensive exfoliation can be obtained by the solution mixing method. It was found that the clay filled NR/BR compound showed better viscoelastic (tan ${\delta}$) and mechanical properties than the carbon black or silica filled NR/BR compounds.

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA) (아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가)

  • Chung, T.J.;Lee, B.H.;Lee, H.J.;Kwon, H.J.;Jang, W.B.;Kim, H.J.;Eom, Y.G.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.

Vibration analysis of functionally graded nanocomposite plate moving in two directions

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan BabaAkbar
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • In the present study, vibration analysis of functionally graded carbon nanotube reinforced composite (FGCNTRC) plate moving in two directions is investigated. Various types of shear deformation theories are utilized to obtain more accurate and simplest theory. Single-walled carbon nanotubes (SWCNTs) are selected as a reinforcement of composite face sheets inside Poly methyl methacrylate (PMMA) matrix. Moreover, different kinds of distributions of CNTs are considered. Based on extended rule of mixture, the structural properties of composite face sheets are considered. Motion equations are obtained by Hamilton's principle and solved analytically. Influences of various parameters such as moving speed in x and y directions, volume fraction and distribution of CNTs, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of composite plate on the vibration characteristics of moving system are discussed in details. The results indicated that thenatural frequency or stability of FGCNTRC plate is strongly dependent on axially moving speed. Moreover, a better configuration of the nanotube embedded in plate can be used to increase the critical speed, as a result, the stability is improved. The results of this investigation can be used in design and manufacturing of marine vessels and aircrafts.

Thermoviscoelastic Stress Analysis by the Finite Element Method (유한요소법에 의한 열점탄성 응력해석)

  • Sim, Woo-JIn;Park, In-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2148-2158
    • /
    • 1996
  • Uncoupled, quasi-static and linear thermoviscoelastic problems are analyzed in time domain by the finite element approximation which is developed using the principle of virtual work and viscoelasticity matrices instead of shear and bulk relaxation functions as in usual formulations. The material is assumed to be isotropic, homegeneous and thermorheologically simple, which means that the temperature-time equivalence postulate is effective. The stress-strain laws are expressed by relaxation-type hereditary integrals. In spatial and time discritizations, isoparametric quadratic quadrilateral finite elements and linear time variations are adopted. For explicit derivations, the viscoelastic material is assumed to behave standard linear solid in shear and elastically in dilatation. Two-dimensional examples are solved under general temperature distributions T = T(x, t), and compared with other opproximate solutions to show the versatility of the presented analysis.

An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings (고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구)

  • Jo Jun-Hyeon;Lee Yong-Bok;Kim Chang-Ho;Rhim Yoon-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF

Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures (건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계)

  • 황재승;민경원;홍성목
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing

  • Koo, Min Ye;Shin, Hon Chung;Kim, Won-Seok;Lee, Gyo Woo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

Generation of novel hyaluronic acid biomaterials for study of pain in third molar intervention: a review

  • Shuborna, Nadia Sultana;Chaiyasamut, Teeranut;Sakdajeyont, Watus;Vorakulpipat, Chakorn;Rojvanakarn, Manus;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Hyaluronic acid (HA) has long been studied in diverse applications. It is a naturally occurring linear polysaccharide in a family of unbranched glycosaminoglycans, which consists of repeating di-saccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. It is almost ubiquitous in humans and other vertebrates, where it participates in many key processes, including cell signaling, tissue regeneration, wound healing, morphogenesis, matrix organization, and pathobiology. HA is biocompatible, biodegradable, muco-adhesive, hygroscopic, and viscoelastic. These unique physico-chemical properties have been exploited for several medicinal purposes, including recent uses in the adjuvant treatment for chronic inflammatory disease and to reduce pain and accelerate healing after third molar intervention. This review focuses on the post-operative effect of HA after third molar intervention along with its various physio-chemical, biochemical, and pharmaco-therapeutic uses.