• Title/Summary/Keyword: viscoelastic effect

Search Result 274, Processing Time 0.025 seconds

Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body

  • Al-Basyouni, K.S.;Ghandourah, E.;Mostafa, H.M.;Algarni, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • In this article, an analytical solution for the effect of the rotation on thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected to periodic loading is studied. The distribution of displacements, temperature, redial stress, and hoop stress in non-homogeneous medium, in the context of generalized thermo-viscoelasticity using the GL theory, is discussed and obtained. The results are displayed graphically to illustrate the effect of the rotation. Comparisons with the previous work in the absence of rotation and viscosity are made.

An integrated optimal design of energy dissipation structures under wind loads considering SSI effect

  • Zhao, Xuefei;Jiang, Han;Wang, Shuguang
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • This paper provides a simple numerical method to determine the optimal parameters of tuned mass damper (TMD) and viscoelastic dampers (VEDs) in frame structure for wind vibration control considering the soil-structure interation (SSI) effect in frequency domain. Firstly, the numerical model of frame structure equipped with TMD and VEDs considering SSI effect is established in frequency domain. Then, the genetic algorithm (GA) is applied to obtain the optimal parameters of VEDs and TMD. The optimization process is demonstrated by a 20-storey frame structure supported by pile group for different soil conditions. Two wind resistant systems are considered in the analysis, the Structure-TMD system and the Structure-TMD-VEDs system. The example proves that this method can quickly determine the optimal parameters of energy dissipation devices compared with the traditional finite element method, thus is practically valuable.

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder

  • Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2009
  • In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates $0{\leq}{\alpha}{\leq}5$ (the rotational rate ex is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For $0{\leq}{\alpha}{\leq}1.8$, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower ${\alpha}$ than the Newtonian case. At ${\alpha}$=5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.

Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper (점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.271-278
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load, a ten-story and twenty-story structure subjected to gravity and wind load were designed. The code-specified design spectrums were constructed for each soil type and performance objective, and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Inter-story drift was adopted as the primary performance criterion. According to the analysis results, all model structures turned out to satisfy the performance level for most of the soil conditions except for the soft soil(operational level). It was also found that the seismic performance could be greatly enhanced, and the structures were led to behave elastically by installing viscoelastic dampers on appropriate locations.

  • PDF

Influences of porosity distributions on bending and buckling behaviour of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Mohammed A. Al-Osta;Ibrahim Alfaqih;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Salah U. Al-Dulaijan;Saeed Tahir
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.179-193
    • /
    • 2024
  • The bending and buckling effect for carbon nanotube-reinforced composite (CNTRC) beams can be evaluated by developing the theory of third shear deformation (TSDT). This study examines beams supported by viscoelastic foundations, where single-walled carbon nanotubes (SWCNTs) are dispersed and oriented within a polymer matrix. Four patterns of reinforcement are used for the CNTRC beams. The rule of mixtures is assessed for the material properties of CNTRC beams. The effective functionally graded materials (FGM) properties are studied by considering three different uneven distribution types of porosity. The damping coefficient is considered to investigate the viscosity effect on the foundation in addition to Winkler's and Pasternak's parameters. The accuracy of the current theory is inspected with multiple comparison works. Moreover, the effects of different beam parameters on the CNTRC beam bending and buckling over a viscoelastic foundation are discussed. The results demonstrated that the O-beam is the weakest type of CNTRC beam to resist buckling and flexure loads, whereas the X-beam is the strongest. Moreover, it is indicated that the presence of porosity in the beams decreases the stiffness and increases deflection. In comparison, the deflection was reduced in the presence of a viscoelastic foundation.

A Numerical Study on the Planar Contraction Flow of Oldroyd B Fluids (Oldroyd B 유체의 평면 수축 유동에 관한 수치 해석적 연구)

  • Yoo, Jung-Yul;Na, Yang
    • The Korean Journal of Rheology
    • /
    • v.2 no.1
    • /
    • pp.33-45
    • /
    • 1990
  • This study analyzes the planar 4:1 contraction flow of viscoelastic fluids with retardation time using finite volume method. To consider separately the elasticity effect of the viscoelastic fluid without shear thinn-ing effect, Oldroyd B liquid model is adopted for the numerical simulation. Instead of the stream function-vorticity formulation, SIMPLER algorithm with staggered grid system which incorporates primitive variable has been introduced in discretizing the momentum equations. An upwind corrected scheme has been used in discetizing the constitutive equations for the non-Newtonian part of the stress. The size of the corner vortex is shown to be slightly influenced by the Weissenberg number. However as the Weissenberg number is increased the chang-ing of the vortex shape agrees qualitatively well with some experimental studies.

  • PDF

Analysis of Disc Creep on the Cauda-Equina Occlusion (추간판 크립이 마미에 미치는 영향 해석)

  • Cho, S.Y.;Kim, Y.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.370-375
    • /
    • 2000
  • To study the effect of a disc creep on the cauda-equina occlusion, 3D-viscoelastic FE model including dura mater was developed. The model was analyzed according to various loading conditions and studied the contact between cauda-equina and nearby elements with time. With this contact the volume of the cauda-equina was changed. The contact and change of the volume were happened most highly in extension with time. By this result, it was concluded that the extension is the most fatal motion to cauda-equina in lumbar spine in all time region.

  • PDF

Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium

  • Lata, Parveen
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.439-451
    • /
    • 2018
  • In the present investigation, a plane P (longitudinal) wave is made incident upon a transversely isotropic magnetothermoelastic solid slab of uniform thickness, interposed between two different semi-infinite viscoelastic solids. The transversely isotropic magnetothermoelastic sandwiched layer is homogeneous with combined effects of two temperature, rotation and Hall current in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of energy dissipation on various amplitude ratios of longitudinal wave with angle of incidence are depicted graphically. Some cases of interest are also deduced from the present investigation.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

The heat transfer characteristics of viscoelastic non-newtonian fluids in the entrance region of circular tube flows (원형관속을 유동하는 점탄성 유체의 입구 영역 열전달 특성에 관한 연구)

  • 엄정섭;황태성;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1032-1043
    • /
    • 1989
  • The heat transfer characteristics of the drag reducing polymer solutions are investigated experimentally in the thermal entrance region of circular tube flows. Fluids used in experiments are the aqueous solutions of high molecular polymer, polyacrylamide Separan AP-273 and the range of polymer concentrations is from 20 to 1000 wppm. Two stainless steel tubes with inside diameter 8.5mm(L/D=712) and 10.3mm(L/D=1160) are used for the heat transfer flow loops. The flow loop is set up to measure friction factors and heat transfer coefficients of test sections in two different modes; the recirculating flow system and once-through flow system. The test tubes are heated directly by electricity to apply the constant heat flux boundary conditions to the wall. Three different types of adaptors are used to observe the effects of the upstream flow conditions of the heat transfer test sections. The viscosity and characteristic relaxation time of the test fluids circulating in the flow system are measured by the capillary tube viscometer and falling ball viscometer at regular time intervals. The installed adaptors exhibit slight effect on the entrance heat transfer of Newtonian fluid. However, no noticeable effects are observed for the entrance heat transfer of the drag reducing fluids. The order of magnitude of the thermal entrance lengths of the drag reducing fluids which follow the minimum friction asymptote is much longer than that of Newtonian fluids in turbulent flows. A new dimensionless parameter, the viscoelastic Graetz number, is defined and all the experimental data are recasted in terms of the viscoelastic Graetz number. The local Nusselt number of the viscoelastic fluids is represented as a function of flow behavior index n and the viscoelastic Graetz number. As degradation continues the viscosity and the characteristic relaxation time of the testing fluids decrease. Weissenberg number defined by the relaxation time and D/V appears to be a proper dimensionless parameter in describing degradation effects on heat transfer of the viscoelastic fluids.