• Title/Summary/Keyword: virus safety

Search Result 265, Processing Time 0.023 seconds

Serological and molecular prevalence of lumpy skin disease virus in Korean water deer, native and dairy cattle in Korea

  • Ko, Young-Seung;Oh, Yeonsu;Lee, Taek Geun;Bae, Da-Yun;Tark, Dongseob;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.2
    • /
    • pp.133-137
    • /
    • 2022
  • Lumpy skin disease (LSD) is a severe cross-border infectious disease that causes fever, skin and visceral nodules in cattle. LSD is caused by the lumpy skin disease virus (LSDV), a dsDNA virus that belongs to the genus Capripoxvirus. Although LSD has been found only in Southern Africa traditionally, in the last decade it is spreading very quickly through the Middle East and into Eastern Europe and China. It usually affects cattle and water buffalos being transmitted by blood-feeding insects. As it causes a huge economic impact, LSD is a notifiable disease by World Organisation for Animal Health, and managed as the legal infectious disease class I in Korea. Therefore, the purpose of this study was to confirm the existence of LSDV antigens or antibodies in Korean livestock. We collected 1,200 blood samples from cattle (Korean native and dairy cattle) and Korean water deer in 4 major provinces of the country, then tested the existence of LSDV antigen and antibody. None (0.0%) of the 1,200 blood samples were positive for both antigen and antibody of LSDV. To the best of our knowledge, this is the first study that examines the prevalence of LSDV in Korea. Our study aims to report the LSDV occurrence situation obtained by surveillance in Korea and provide information that may help prevention of LSD epidemics.

Development of inactivated Akabane and bovine ephemeral fever vaccine for cattle

  • Yang, Dong-Kun;Kim, Ha-Hyun;Jo, Hyun-Ye;Choi, Sung-Suk;Cho, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.227-232
    • /
    • 2015
  • Akabane and bovine ephemeral fever (BEF) viruses cause vector-borne diseases. In this study, inactivated Akabane virus (AKAV)+Bovine ephemeral fever virus (BEFV) vaccines with or without recombinant vibrio flagellin (revibFlaB) protein were expressed in a baculovirus expression system to measure their safety and immunogenicity. Blood was collected from mice, guinea pigs, sows, and cattle that had been inoculated with the vaccine twice. Inactivated AKAV+BEFV vaccine induced high virus neutralizing antibody (VNA) titer against AKAV and BEFV in mice and guinea pigs. VNA titers against AKAV were higher in mice and guinea pigs immunized with the inactivated AKAV+BEFV vaccine than in animals inoculated with vaccine containing revibFlaB protein. Inactivated AKAV+BEFV vaccine elicited slightly higher VNA titers against AKAV and BEFV than the live AKAV and live BEFV vaccines in mice and guinea pigs. In addition, the inactivated AKAV+BEFV vaccine was safe, and induced high VNA titers, ranging from 1 : 64 to 1 : 512, against both AKAV and BEFV in sows and cattle. Moreover, there were no side effects observed in any treated animals. These results indicate that the inactivated AKAV+BEFV vaccine could be used in cattle with high immunogenicity and good safety.

Identification of Hepatitis B (HBV) and C (HCV) Virus Infection among Doctors and Nurses in Tertiary Hospitals in Mongolia

  • Batbold, D.;Baigalmaa, Dovdon;Ganbaatar, B.;Chimedsuren, O.
    • Perspectives in Nursing Science
    • /
    • v.7 no.1
    • /
    • pp.50-54
    • /
    • 2010
  • The studies of M. Colombo (1989) and W. Lange (1992) showed that 30~40% of people became chronic after suffering from hepatitis B virus (HBV) and C virus (HCV) infection, and about 50% of the chronic cases transformed into primary liver cancer. There have been few studies done in Mongolia on hepatitis infection among health professionals, particularly in nurses. In a study done by Chimedsuren (8), the study showed that 19.4% of people with identified surface hepatitis B antigen (HBsAg) and antibodies to hepatitis C virus and 8% of people with the identified nucleotide of RNA for the hepatitis C virus (polymerase chain reaction) had an acute form of hepatitis C. Studies on the hepatitis virus genome damaging effect on liver cells showed that genotype 8 (A, B, C, D, E, F, G, TTV) had the most damaging effect on liver cells (Hahn and Faeka, 2007). Several studies have shown a relationship between hepatitis B virus infection and a lack of compliance regarding safety regulations and rules by medical personnel. Results of a study from the Maternal and Child Health Research Center showed that tests done to detect hepatitis B virus antigen and antibodies to C virus did not reveal anything. Both antigen and antibodies in 69% cases did not show, and separately, B virus and antibodies to hepatitis C virus were identified in 13% and 9%, respectively. Results of the tests taken from health personnel in Shastin Central Hospital showed that in 76% of the cases, the B virus antigen with C virus antibodies was not identified. In 8% of the cases, the B virus antigen was present on its own. The combination of B the virus antigen and C virus antibodies were present in 8% of nurses and doctors, respectively. 82% of the cases had negative results for the detection of a combination of B virus antigen and C virus antibodies taken from health personnel from the State Central Clinical Hospital whereas the B virus antigen and C virus antibodies by themselves were present in 7% and 14% of the cases, respectively. Combined cases of the B virus antigen and C virus antibodies were identified in 4% of the personnel. Results of the tests taken from the health personnel in the Hospital of the Ministry of Justice and Internal Affairs showed that in 79% of the cases, the B virus antigen with C virus antibodies were not identified. Separately, the B virus and antibodies to hepatitis C virus were identified in 8% and 13% of the cases, respectively.

  • PDF

Safety and efficacy of modified-live infectious laryngotracheitis vaccines (닭 전염성 후두기관염 생독백신의 안전성과 효능)

  • Han, Myung-Guk;Lee, O-Soo;Kim, Jea-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.241-251
    • /
    • 2002
  • Modified-live (ML) infectious laryngotracheitis (ILT) vaccines have been widely used as a preventive measure in Korea since the first outbreak of ITL. Recently, it has been observed that chickens vaccinated with the commercially available ML ILT vaccine have sometimes exhibited adverse clinical signs. In this study, we evaluated the quality of the vaccines by comparing titer of each vaccine batch and testing the stability of ILT virus (ILTV) in vaccine diluents and compared the safety and efficacy of vaccines in specific pathogen free (SPF) chickens. The ratio of maximum titer to minimum titer of vaccine produced by most manufacturers was 2 to 15. However, 2 out of 11 manufacturers produced vaccines of which the ratio was 74 to 478. Most vaccines examined were maintained vaccine titers suitable for national regulations within expiry date. However, some vaccines did not keep the titer required for the national regulations. In the test for stability of ILTV in various diluents, ILTV was highly stable in lactose-phosphate-glutamine-gelatin solution, sucrose-phophate-glutamine-albumin solution and some vaccine diluents produced by manufacturers. The safety of ML ILT vaccines was assessed in 10-day-old SPF chicks. Mortality in SPF chicks inoculated intratracheally with one dose of vaccine varied depending on vaccines and some vaccines produced 50-85% mortality. Seven-week-old SPF chickens were vaccinated intraocularly with ML ILT vaccines and then challenged intratracheally with ILT challenge virus 14 days after vaccination. The protection rate was assessed by clinical signs and reisolation of the ILT challenge virus from tracheas taken at day 4 after challenge. There were slight respiratory reactions in some vaccinated chickens after vaccination but these reactions disappeared within 5 days after vaccination. No further clinical signs and death were observed. Protection rate determined by clinical signs and mortality was 100% in all vaccinated groups. However, the challenge virus was isolated from all tracheas of chickens vaccinated with vaccine B or control groups. The challenge virus was also isolated in the trachea of one in five chickens vaccinated with either vaccine F or K, but not in tracheas of chickens vaccinated with other vaccines. In the present study, the stability of vaccine diluents, pathogenicity and protection rate based on reisolation test of the challenge virus were different depending on vaccines produced by eleven manufacturers.

Removal and inactivation of bovine herpes virus and murine encephalomycarditis virus by a chromatography, pasteurization, and lyophilization during the manufacture of urokinase from human urine

  • Choe, Yong-Un;Lee, Seong-Rae;Park, Dae-Han;Lee, Gyeong-Myeong;Gu, Bon-Mok;Kim, In-Seop;U, Han-Sang;Lee, Seong-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.615-618
    • /
    • 2000
  • The purpose of present study was to examine the efficacy of PAB (para-amino benzamidine) affinity column chromatography, pasteurization ($60^{\circ}C$ heat treatment for 10 h), and lyophilization steps, employed in the manufacture of urokinase from human urine, in the removal and/or inactivation of urine-born viruses. Bovine herpes virus (BHV) and Murine encephalomyocarditis virus (EMCV) were selected for this study. Samples from the relevant stages of the production process were spiked with the viruses and the amount of virus in each fraction was quantified by 50% tissue culture infectious dose ($TCID_{50}$). BHV and EMCV were effectively partitioned from urokinase during PAB chromatography with the log reduction factors of 6.71 and 5.27, respectively. Pasteurization was a robust and effective step in inactivating BHV and EMCV, of which titers were reduced from initial titers of $8.65\;log_{10}\;TCID_{50}$ and $7.81\;log_{10}\;TCID_{50}$, respectively, to undetectable levels within 1 hour of treatment. The log reduction factors achieved during lyophilization were 2.06 for BHV and 4.54 for EMCV. These results indicate that the production process for urokinase has sufficient virus reducing capacity to achieve a high margin of virus safety.

  • PDF

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix (인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정)

  • Bae, Jung-Eun;Kim, Jin-Young;Ahn, Jae-Hyoung;Choi, Da-Mi;Jeong, Hyo-Sun;Lee, Dong-Hyuck;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2010
  • Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Identification and Safety Assessment of Cucumber Mosaic Virus Coat Protein in Genetically Modified Pepper (Capsicum annuum)

  • Kim, Eunji;Noh, Hee Min;Phat, Chanvorleak;Lee, Gung Pyo;Kim, Jun Hong;Park, Tae-Sung;Lee, Chan
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.924-939
    • /
    • 2016
  • The great economic losses caused by Cucumber mosaic virus (CMV) infection of peppers has led to the development of genetically modified (GM) CMV-resistant peppers. We developed virus-resistant pepper plants using Agrobacterium tumefaciens -mediated transformation. The expressed recombinant protein was purified using nickel-nitrilotriacetic acid resin and immunoaffinity chromatography, and purity was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Immunoblot analysis revealed the purified CMV coat protein (CMV-CP) had a molecular mass of 25 kDa. After in-gel digestion and desalting, the internal peptide fragments of CMV-CP were sequenced by matrix-assisted laser desorption/ionization-time of flight. Most GM pepper and Escherichia coli BL21 internal peptides had identical peptide sequences and contained 137 of 183 whole peptides in CMV-CP. A quantitative enzyme-linked immunosorbent assay was performed to detect CMV-resistant GM peppers. We also provide basic information about the expressed protein in GM peppers for further safety assessment. The contents of soluble protein and CMV-CP were measured in GM and control peppers cultivated in three different areas of Korea. Statistical significance in terms of cultivation areas, harvest times, generations, and plant tissue origin were determined based on a P value of 0.05. The highest amount of CMV-CP was detected at the seedling stage from plant grown in each region. T3 and T5 showed significantly different levels of CMV-CP from T4 in leaves in the whorl stage. No statistical differences were observed among GM peppers at different stages of maturity in any cultivation area. The results from this study contribute to the safety evaluation of newly designed CMV-resistant GM peppers and provide a standard against which to compare other virus-resistant GM peppers.

Molecular Survey of Latent Pseudorabies Virus Infection in Nervous Tissues of Slaughtered Pigs by Nested and Real-time PCR

  • Yoon Hyun A;Eo Seong Kug;Aleyas Abi George;Park Seong Ok;Lee John Hwa;Chae Joon Seok;Cho Jeong Gon;Song Hee Jong
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.430-436
    • /
    • 2005
  • In this study, the prevalence and quantity of a latent pseudorabies virus (PrV) infection in the nervous tissues of randomly selected pigs was determined via nested and real-time PCR. The nervous tissues, including the trigeminal ganglion (TG), olfactory bulb (OB), and brain stem (BS), were collected from the heads of 40 randomly selected pigs. The majority of the nervous tissues from the selected pigs evidenced a positively amplified band on nested PCR. In particular, nested PCR targeted to the PrV glycoprotein B (gB) gene yielded positive results in all of the BS samples. Nested PCR for either the gE or gG gene produced positive bands in a less number of nervous tissues ($57.5\%$ and $42.5\%$, respectively). Real-time PCR revealed that the examined tissues harbored large copy numbers of latent PrV DNA, ranging between $10^{0.1}\;and\;10^{7.2}(1-1.58{\times}10^7)$ copies per $1{\mu}g$ of genomic DNA. Real-time PCR targeted to the PrV gE gene exhibited an accumulated fluorescence of reporter dye at levels above threshold, thereby indicating a higher prevalence than was observed on the nested PCR ($100\%$ for BS, $92\%$ for OB, and $85\%$ for TG). These results indicate that a large number of farm-grown pigs are latently infected with a field PrV strain with a variety of copy numbers. This result is similar to what was found in association with the human herpes virus.

Study on potential environmental risk of virus resistant LM plants using co-inoculation of Zucchini green mottle mosaic virus (ZGMMV) and Cucumber mosaic virus (CMV) (ZGMMV와 CMV 동시 접종을 통한 바이러스 저항성 LM 식물의 잠재적 환경 위해성 연구)

  • Song, Hae-Ryong;Kim, Taesung;Kim, Sun-Jung;Kim, Yong-Hyun;Kim, Ki-Jeong;Chung, Hyen-Mi;Choi, Hee Lak;Yoon, Junheon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.125-134
    • /
    • 2013
  • Plant virus coat (CP) gene-mediated protection is one of the best known approaches to protect against virus resistant transgenic plants. Transgenic N. benthamiana plants containing the CP gene of Zucchini green mottle mosaic virus (ZGMMV) were used for the environmental risk assessment of the living modified (LM) plants with plant virus resistance. The most optimal co-infection method of both ZGMMV and CMV (Cucumber mosaic virus) on Non-LM and CP-expressing LM tobacco plants was established and co-infection of CMV and ZGMMV was confirmed by polymerase chain reaction (PCR). To address the effects of LM tobacco plants on the mutation of the virus, in-vitro transcripts of CP and Replicase (Rep) derived from CMV and/or ZGMMV were inoculated onto Non-LM or LM tobacco plants. Mutation frequency of CP and Rep from CMV and ZGMMV was examined through six serial passages in Non-LM and LM tobacco plants. Little actual frequency of mutation was estimated, probably due to the limited number of transgenic plants tested in this study. However, it does not suggest environmental safety of these CP-mediated LM plants. Further study at a larger scale is needed to evaluate the environmental risk associated with the CP-expressing LM plants.

Personal, Occupational, and Public Health Perspectives on Dealing with the First Case of Influenza A (H1N1) in the United Arab Emirates

  • Shah, Syed M.;Aw, Tar-Ching;Blair, Iain;Hashmey, Rayhan;Sheek-Hussein, Mahmoud
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.83-86
    • /
    • 2011
  • New epidemics of infectious diseases often involve health care workers. In this short communication we present a case report of a health care professional who became the first case of influenza H1N1 virus to be notified in the United Arab Emirates. There are several issues related to workplace considerations and general public health, including preventive measures, the need for isolation of the patient, dealing with contacts, return to work, and communication with the workforce.