Molecular Survey of Latent Pseudorabies Virus Infection in Nervous Tissues of Slaughtered Pigs by Nested and Real-time PCR

  • Yoon Hyun A (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Eo Seong Kug (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Aleyas Abi George (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Park Seong Ok (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Lee John Hwa (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Chae Joon Seok (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Cho Jeong Gon (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Song Hee Jong (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
  • Published : 2005.10.01

Abstract

In this study, the prevalence and quantity of a latent pseudorabies virus (PrV) infection in the nervous tissues of randomly selected pigs was determined via nested and real-time PCR. The nervous tissues, including the trigeminal ganglion (TG), olfactory bulb (OB), and brain stem (BS), were collected from the heads of 40 randomly selected pigs. The majority of the nervous tissues from the selected pigs evidenced a positively amplified band on nested PCR. In particular, nested PCR targeted to the PrV glycoprotein B (gB) gene yielded positive results in all of the BS samples. Nested PCR for either the gE or gG gene produced positive bands in a less number of nervous tissues ($57.5\%$ and $42.5\%$, respectively). Real-time PCR revealed that the examined tissues harbored large copy numbers of latent PrV DNA, ranging between $10^{0.1}\;and\;10^{7.2}(1-1.58{\times}10^7)$ copies per $1{\mu}g$ of genomic DNA. Real-time PCR targeted to the PrV gE gene exhibited an accumulated fluorescence of reporter dye at levels above threshold, thereby indicating a higher prevalence than was observed on the nested PCR ($100\%$ for BS, $92\%$ for OB, and $85\%$ for TG). These results indicate that a large number of farm-grown pigs are latently infected with a field PrV strain with a variety of copy numbers. This result is similar to what was found in association with the human herpes virus.

Keywords

References

  1. Azmi, M.L.M., N.A. Zeenathul, A.-W.S. Ali, C.A.R. Mohamed, and A.I. Kamarudin. 2002. A restrictive virus tropism, latency and reactivation of pseudorabies virus following irreversible deletion of BsrI restriction site in the thymidine-kinase gene. J. Microbiol. 40, 1-10
  2. Balasch, M., J. Pujols, J. Segales, and M. Pumarola. 1998a. Aujeszky's disease (pseudorabies) virus detection in cerebrospinal fluid in experimentally infected pigs. Vet. Microbiol. 60, 99-106 https://doi.org/10.1016/S0378-1135(97)00156-9
  3. Balasch, M., J. Pujols, J. Segales, J. Plana-Duran, and M. Pumarola. 1998b. Study of the persistence of Aujeszky's disease (pseudorabies) virus in peripheral blood mononuclear cells and tissues of experimentally infected pigs. Vet. Microbiol. 62, 171- 183 https://doi.org/10.1016/S0378-1135(98)00208-9
  4. Beran, G.W., E.B. Davies, P.V. Arambulo 3rd., L.A. Will, H.T. Hill, and D.L. Rock. 1980. Persistence of pseudorabies virus in infected swine. J. Am. Vet. Med. Assoc. 5;176(10 Pt 1), 998-1000
  5. Brockmeier, S.L., K.M. Lager, and W.L. Mengeling. 1993. Comparison of in vivo reactivation, in vitro reactivation, and polymerase chain reaction for detection of latent pseudorabies virus infection in swine. J. Vet. Diagn. Invest. 5, 505-509 https://doi.org/10.1177/104063879300500401
  6. Brown, T.M., F.A. Osorio, and D.L. Rock. 1990. Detection of latent pseudorabies virus in swine using in situ hybridization. Vet. Microbiol. 24, 273-280 https://doi.org/10.1016/0378-1135(90)90177-W
  7. Denis, M., C. Soumet, O. Legeay, C. Arnauld, S. Bounaix, R. Thiery, and A. Jestin. 1997. Development of a semiquantitative PCR assay using internal standard and colorimetric detection on microwell plate for pseudorabies virus. Mol. Cell. Probes 11, 439-448 https://doi.org/10.1006/mcpr.1997.0139
  8. Enquist, L.W., M.J. Tomishima, S. Gross, and G.A. Smith. 2002. Directional spread of an alpha-herpesvirus in the nervous system. Vet. Microbiol. 86, 5-16 https://doi.org/10.1016/S0378-1135(01)00486-2
  9. Ferrari, M., A. Brack, M.G. Romanelli, T.C. Mettenleiter, A. Corradi, N. Dalmas, M.N. Losio, R. Silini, C. Pinoni, and A. Pratelli. 2000. A study of the ability of a TK-negative and gI/gE-negative pseudorabies virus (PRV) mutant inoculated by different routes to protect pigs against PRV infection. J. Vet Med. B47, 753-762
  10. Jacobs, L., T.G. Kimman, and A. Bianchi. 1996. Lack of serum antibodies against glycoprotein E in pseudorabies virus-immune pigs infected with wild-type virus. Am. J. Vet. Res. 57, 1525- 1528
  11. Kit, S., Y. Awaya, H. Otsuka, and M. Kit. 1990. Blocking ELISA to distinguish pseudorabies virus-infected pigs from those vaccinated with a glycoprotein gIII deletion mutant. J. Vet. Diag. Inv. 2, 14-23 https://doi.org/10.1177/104063879000200104
  12. Kluge, J.P., G.W. Beran, H.T. Hill, and K.B. Platt. 1999. Pseudorabies (Aujeszky's Disease), p.233-246. In Straw, B.E., D'Aillaire, S., Mengeling, W.L., Taylor, D.J. (eds.), Disease of swine, 8th ed. Iowa State University Press, Ames, Iowa
  13. Krumbholz, A., R. Wurm, O. Scheck, E. Birch-Hirschfeld, R. Egerer, A. Henke, P. Wutzler, and R. Zell. 2003. Detection of porcine teschoviruses and enteroviruses by light cycler realtime PCR. J. Virol. Methods 113, 51-63 https://doi.org/10.1016/S0166-0934(03)00227-1
  14. Lehmann, D., R. Sodoyer, S. Leterme, and D. Crevat. 2002. Improvement of serological discrimination between herpesvirus- infected animals and animals vaccinated with marker vaccines. Vet. Microbiol. 86, 59-68 https://doi.org/10.1016/S0378-1135(01)00491-6
  15. Lokensgard, J.R., D.G. Thawley, and T.W. Molitor. 1990. Pseudorabies virus latency: restricted transcription. Arch. Virol. 110, 129-136 https://doi.org/10.1007/BF01310709
  16. Lokensgard, J.R., D.G. Thawley, and T.W. Molitor. 1991. Enzymatic amplification of latent pseudorabies virus nucleic acid sequences. J. Virol. Methods 34, 45-55 https://doi.org/10.1016/0166-0934(91)90120-O
  17. Maes, R.K., M.D. Sussman, A. Vilnis, and B.J. Thacker. 1997. Recent developments in latency and recombination of Aujeszky's disease (pseudorabies) virus. Vet. Microbiol. 55, 13-27 https://doi.org/10.1016/S0378-1135(96)01305-3
  18. Maes, R.K. and B.J. Thacker. 1988. Efficacy of different tissue explantation method in detecting latent pseudorabies (Aujeszky's disease) virus infection. p. 165. Proc. 10th IPVS Congress, Rio de Janeiro, Brazil
  19. Mengeling, W.L. 1991. Virus reactivation in pigs latently infected with a thymidine kinase-negative vaccine strain of pseudorabies virus. Arch. Virol. 120, 57-70 https://doi.org/10.1007/BF01310949
  20. McCaw, M.B., F.A. Osorio, J. Wheeler, J. Xu, and G.A. Erickson. 1997. Effect of maternally acquired Aujeszky's disease (pseudorabies) virus-specific antibody in pigs on establishment of latency and seroconversion to differential glycoproteins after low dose challenge. Vet. Microbiol. 55, 91-98 https://doi.org/10.1016/S0378-1135(96)01315-6
  21. McFarlane, R.G., D.G. Thawley, and R.F. Solorzano. 1986. Detection of latent pseudorabies virus in porcine tissue, using a DNA hybridization dot-blot assay. Am. J. Vet. Res. 47, 2329-2336
  22. Mishra, K.K., S. Srivastava, P.P. Dwivedi, K.N. Prasad, and A. Ayyagari. 2002. PCR-based RFLP analysis of ureC gene for typing of Indian Helicobacter pylori strains from gastric biopsy specimens and culture. J. Microbiol. 40, 282-288
  23. Mumford, R., A. Skelton, E. Metcalfe, K. Walsh, and N. Boonham. 2004. The reliable detection of barley yellow and mild mosaic viruses using real-time PCR ($TaqMan^{\circledR}$). J. Virol. Methods 117, 153-159 https://doi.org/10.1016/j.jviromet.2004.01.006
  24. Ozoemena, L.C., P.D. Minor, and M.A. Afzal. 2004. Comparative evaluation of measles virus specific TaqMan PCR and conventional PCR using synthetic and natural RNA templates. J. Med. Virol. 73, 79-84 https://doi.org/10.1002/jmv.20050
  25. Park, Y.J., Y.K. Choi, and B.R. Min. 2003. PCR-DGGE and PCRRFLP analyses of the internal transcribed spacer (ITS) of ribosomal DNA in the genus Rhizopus. J. Microbiol. 41, 157-160
  26. Pensaert, M., G. Labarque, H. Favoreel, and H. Nauwynck. 2004. Aujeszky's disease vaccination and differentiation of vaccinated from infected pigs. Dev. Biol. 119, 243-254
  27. Rock, D.L. 1993. The molecular basis of latent infections by alphaherpesvirus. Seminars in Virology 4, 157-165
  28. Romero, C.H., P.N. Meade, B.L. Homer, J.E. Shultz, and G. Lollis. 2003. Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine. J. Wildl. Dis. 39, 567- 575
  29. Schang, L.M. and F.A. Osorio. 1994. Quantitation of latency established by attenuated strains of pseudorabies (Aujeszky's disease) virus. J. Virol. Methods 50, 269-280 https://doi.org/10.1016/0166-0934(94)90183-X
  30. Thawley, D.G., R.F. Solorzano, and M.E. Johnson. 1984. Confirmation of pseudorabies virus infection, using virus recrudescence by dexamethasone treatment and in vitro lymphocyte stimulation. Am. J. Vet. Res. 45, 981-983
  31. Tomishima, M. and L.W. Enquist. 2002. In vivo egress of an alphaherpesvirus from axons. J. Virol. 76, 8310-8317 https://doi.org/10.1128/JVI.76.16.8310-8317.2002
  32. van Oirshot, J.T., A.L.J. Gielkens, R.J.M. Moormann, and A.J.M Berns. 1990. Maker vaccine, virus protein-specific antibody assays and the control of Aujeszky's disease. Vet. Microbiol. 23, 85-101 https://doi.org/10.1016/0378-1135(90)90139-M
  33. Vilnis, A., M.D. Sussman, B.J. Thacker, M. Senn, and R.K. Maes. 1998. Vaccine genotype and route of administration affect pseudorabies field virus latency load after challenge. Vet. Microbiol. 62, 81-96 https://doi.org/10.1016/S0378-1135(98)00200-4
  34. Volz, D.M., K.M. Lager, and W.L. Mengeling. 1992. Latency of a thymidine kinase-negative pseudorabies vaccine virus detected by the polymerase chain reaction. Arch. Virol. 122, 341-348 https://doi.org/10.1007/BF01317195
  35. Wheeler, J.G. and F.A. Osorio. 1991. Investigation of sites of pseudorabies virus latency, using polymerase chain reaction. Am. J. Vet. Res. 52, 1799-1803
  36. Yoon, Y.J., K.H. Im, Y.H.Koh, S.K. Kim, and J.W. Kim. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319