• 제목/요약/키워드: virulence gene

검색결과 318건 처리시간 0.027초

양식산 강도다리(Platichthys stellatus)에서의 비정형 Aeromonas salmonicida 분리 (Isolation of atypical Aeromonas salmonicida in cultured starry flounder (Platichthys stellatus))

  • 김위식;권민수;김휘진;오명주;공경희
    • 한국어병학회지
    • /
    • 제35권2호
    • /
    • pp.247-250
    • /
    • 2022
  • About 6.7% mortality was reported in a starry flounder (Platichthys stellatus) aquaculture farm in 2022. Most of the diseased fish showed a loss of pectoral fin, hemorrhages on muscle and gills, pale gills, enlarged spleen, and nodules on kidney. Parasites, fungi or viruses (viral hemorrhagic septicemia virus and hirame novirhabdovirus) were not detected from diseased fish. However, numerous bacteria were isolated from liver, spleen and kidney. Nucleotide sequences of the A-protein-encoding virulence array protein gene (vapA) of the bacteria showed 99.93% identity with Aeromonas salmonicida subsp. masoucida. This study is the first report of isolation of atypical A. salmonicida in cultured starry flounder in Korea.

Draft Genome Sequences of Three Airborne Aspergilli Series Versicolores

  • Gery, Antoine;Seguin, Virginie;Bonhomme, Julie;Garon, David
    • Mycobiology
    • /
    • 제50권1호
    • /
    • pp.96-98
    • /
    • 2022
  • The Aspergilli of the section Nidulantes series Versicolores are among the most recurrent molds in indoor environments. These species cause damage to the quality of air. Indeed, they are responsible for allergies, aggravation of asthma and can even cause infections in immunocompromised patients. Molds belonging to the Versicolores series also produce sterigmatocystin, a mycotoxin classified as potential human carcinogen by the International Agency for Research on Cancer (group 2B). Here, we provide for the first time the genome of three species of the series Versicolores: Aspergillus creber, Aspergillus jensenii and Aspergillus protuberus which are the most abundant species of this series in bioaerosols. The genomes of these three species could be assembled with a percentage of completeness of 97.02%, 96.21% and 95.35% for Aspergillus creber, A. jensenii and A. protuberus respectively. These data will allow to study the genes and gene clusters responsible for the expression of virulence factors, the biosynthesis of mycotoxins and the proliferation of these ubiquitous and recurrent molds.

A narrative review of genomic characteristics, serotype, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide

  • Ratna Fathma Sari;Fadilah Fadilah;Yustinus Maladan;Rosantia Sarassari;Dodi Safari
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권2호
    • /
    • pp.91-104
    • /
    • 2024
  • This narrative review describes genomic characteristic, serotyping, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide (CPS). CPS is a primary virulence factor of S. pneumoniae. The genomic characteristics of S. pneumoniae CPS, including the role of biosynthetic gene and genetic variation within cps (capsule polysaccharide) locus which may lead to serotype replacement are still being investigated. One hundred unique serotypes of S. pneumoniae have been identified through various methods of serotyping using phenotypic and genotypic approach. The advantages and limitations of each method are various, emphasizing the need for accurate and comprehensive serotyping for effective disease surveillance and vaccine targeting. In addition, we elaborate the critical role of CPS in vaccine development by providing an overview of immunogenicity, ongoing research of pneumococcal vaccines, and the impact on disease burden.

Whole-Genome Analysis of Salmonella Enterica subsp. Enterica serovar Gallinarum biovar Gallinarum Strain IJES3-1 Isolated from a Retail Chicken Shell Egg in Korea

  • Beom Soon Jang;Kun Taek Park
    • 한국식품위생안전성학회지
    • /
    • 제39권4호
    • /
    • pp.353-355
    • /
    • 2024
  • Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum causes fowl typhoid in poultry. In this study, we isolated Salmonella from a Korean retail chicken shell egg and performed whole-genome sequencing, from which we identified one chromosome (4,659,977-bp) and two plasmids (plasmid_1: 87,506 bp and plasmid_2: 2,331 bp). The isolate serotype was confirmed to be Gallinarum, with a biovar type of Gallinarum, which was finally identified as Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum. Multilocus sequence typing confirmed that the isolate was that of sequence type 78. The antimicrobial resistance gene, aac(6')-laa, was identified on the chromosome, and 166 virulence genes were detected on the chromosome and plasmid_1.

Prevalence, Serotype Diversity, Genotype and Antibiotic Resistance of Listeria monocytogenes Isolated from Carcasses and Human in Korea

  • Oh, Hyemin;Kim, Sejeong;Lee, Soomin;Lee, Heeyoung;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyung;Choi, Kyoung-Hee;Yoon, Yohan
    • 한국축산식품학회지
    • /
    • 제38권5호
    • /
    • pp.851-865
    • /
    • 2018
  • This study investigated the prevalence of Listeria monocytogenes in slaughterhouses, and determined serovars and genotypes, and antibiotic resistance of the isolates obtained from slaughterhouses and humans in Korea. Two hundred ninety samples were collected from feces (n=136), carcasses [n=140 (cattle: n=61, swine: n=79)], and washing water (n=14) in nine slaughterhouses. Eleven human isolates were obtained from hospitals and the Korea Center for Disease Control and Prevention. Listeria monocytogenes was enriched and identified, using polymerase chain reaction (PCR) and 16S rRNA sequencing. Serovars and presence of virulence genes were determined, and genetic correlations among the isolates were evaluated by the restriction digest patterns of AscI. Antibiotic resistance of L. monocytogenes isolates were examined against 12 different antibiotics. Of 290 slaughterhouse samples, 15 (5.17%) carcass samples were L. monocytogenes positive. Most L. monocytogenes isolates possessed all the virulence genes, while polymorphisms in the actA gene were found between carcass and human isolates. Serovars 1/2a (33.3%) and 1/2b (46.7%) were the most frequent in carcass isolates. Genetic correlations among the isolates from carcass and clinical isolates were grouped within serotypes, but there were low geographical correlations. Most L. monocytogenes isolates were antibiotic resistant, and some strains showed resistance to more than four antibiotics. These results indicate that L. monocytogenes are isolated from carcass and human in Korea, and they showed high risk serotypes and antibiotic resistance. Therefore, intensive attentions are necessary to be aware for the risk of L. monocytogenes in Korea.

Functional Analysis of a Histidine Auxotrophic Mutation in Gibberella zeae

  • Seo, Back-Won;Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2007
  • A plant pathogenic fungus, Gibberella zeae (anamorph: Fusarium graminearum), not only generates economic losses by causing disease on cereal grains, but also leads to severe toxicosis in human and animals through the production of mycotoxins in infected plants. Here, we characterized a histidine auxotrophic mutant of G. zeae, designated Z43R1092, which was generated using a restriction enzyme-mediated integration (REMI) procedure. The mutant exhibited pleiotropic phenotypic changes, including a reduction in mycelial growth and virulence and loss of sexual reproduction. Outcrossing analysis confirmed that the histidine auxotrophy is linked to the insertional vector in Z43R1092. Molecular analysis showed that the histidine requirement of Z43R1092 is caused by a disruption of an open reading frame, designated GzHIS7. The deduced product of GzHIS7 encodes a putative enzyme with an N-terminal glutamine amidotransferase and a C-terminal cyclase domain, similar to the Saccharomyces cerevisiae HIS7 required for histidine biosynthesis. The subsequent gene deletion and complementation analyses confirmed the functions of GzHIS7 in G. zeae. This is the first report of the molecular characterization of histidine auxotrophy in G. zeae, and our results demonstrate that correct histidine biosynthesis is essential for virulence, as well as sexual development, in G. zeae. In addition, our results could provide a G. zeae histidine auxotroph as a recipient strain for genetic transformation using this new selectable marker.

Infection and Immune Response in the Nematode Caenorhabditis elegans Elicited by the Phytopathogen Xanthomonas

  • Bai, Yanli;Zhi, Dejuan;Li, Chanhe;Liu, Dongling;Zhang, Juan;Tian, Jing;Wang, Xin;Ren, Hui;Li, Hongyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1269-1279
    • /
    • 2014
  • Xanthomonas oryzae pv. oryzae (Xoo) strains are plant pathogenic bacteria that can cause serious blight of rice, and their virulence towards plant host is complex, making it difficult to be elucidated. Caenorhabditis elegans has been used as a powerful model organism to simplify the host and pathogen system. However, whether the C. elegans is feasible for studying plant pathogens such as Xoo has not been explored. In the present work, we report that Xoo strains PXO99 and JXOIII reduce the lifespan of worms not through acute toxicity, but in an infectious manner; pathogens proliferate and persist in the intestinal lumen to cause marked anterior intestine distension. In addition, Xoo triggers (i) the p38 MAPK signal pathway to upregulate its downstream C17H12.8 expression, and (ii) the DAF-2/DAF-16 pathway to upregulate its downstream gene expressions of mtl-1 and sod-3 under the condition of daf-2 mutation. Our findings suggest that C. elegans can be used as a model to evaluate the virulence of Xoo phytopathogens to host.

The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

  • Son, Moonil;Lee, Yoonseung;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.281-289
    • /
    • 2016
  • The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.

국내 분리 돼지 부종병 대장균의 병원성 유전자 및 시가독소 생성 검증 (Evaluation of the virulence genes and Shiga toxin-producing abilities of Escherichia coli field isolates causing edema disease in pigs)

  • 서병주;정창기;강아름;조호성;김원일
    • 한국동물위생학회지
    • /
    • 제39권2호
    • /
    • pp.87-92
    • /
    • 2016
  • Porcine edema disease (ED) is a communicable disease of pigs caused by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC) which expresses F18 fimbriae and/or Stx type 2e (Stx2e). While STEC causes a severe illness including hemorrhagic colitis and hemolytic-uremic syndrome in humans, it induces damage to the vascular endothelium, which results in edema, hemorrhage, and microthrombosis, leading in high mortality in pigs. In the present study, we cultured Stx2e-producing E. coli field isolates from conventional pig farms that experienced sudden deaths previously with symptoms similar to porcine edema disease, which were further investigated with Shiga toxin profiles. A total of 43 strains were identified from the collected samples by F18 or Stx2e specific PCR. Based on the PCR, 42 isolates out of 43 isolates were proved to carry one of F18 or Stx2e genes and 14 isolates to carry both F18 and Stx2e genes. All of the 30 isolates that harbored Stx2e gene induced the cytopathic effect (CPE) in vero cells and especially, the isolate 150229 produced the highest level of Shiga toxin. Therefore, we identified the virulence genes (F18 and Stx2e) and demonstrated Shiga toxin-producing abilities from porcine edema disease causing E. coli filed isolates. These results suggested that one of the isolates could be a vaccine antigen candidate against STEC through further investigating to elicit an immune response.

IVET-based Identification of Virulence Factors in Vibrio vulnificus MO6-24/O

  • Lee, Ko-Eun;Bang, Ji-Sun;Baek, Chang-Ho;Park, Dae-Kyun;Hwang, Won;Choi, Sang-Ho;Kim, Kum-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.234-243
    • /
    • 2007
  • Vibrio vulnificus is an opportunistic pathogen that causes septicemia in humans. To identify the genes associated with its pathogenicity, in vivo expression technology (IVET) was used to select genes specifically expressed in a host, yet not significantly in vitro. Random lacZ-fusions in the genome of V vulnificus strain MO6-24/O were constructed using an IVET vector, pSG3, which is a suicide vector containing promoterless-aph and -lacZ as reporter genes. A total of ${\sim}18,000$ resulting library clones were then intraperitoneally injected into BALB/c mice using a colony forming unit (CFU) of $1.6{\times}10^6$. Two hours after infection, kanamycin was administered at $200{mu}g$ per gram of mouse weight. After two selection cycles, 11 genes were eventually isolated, which were expressed only in the host. Among these genes, VV20781 and VV21007 exhibiting a homology to a hemagglutinin gene and tolC, respectively, were selected based on having the highest frequency. When compared to wild-type cells, mutants with lesions in these genes showed no difference in the rate of growth rate, yet a significant decrease in cytotoxicity and the capability to form a biofilm.