• Title/Summary/Keyword: virtual simulation

Search Result 2,147, Processing Time 0.027 seconds

Images of Decomposition of Hydrogen Peroxide Demonstration Represented in New Media Contents: Focusing on Simulacra and Simulation (뉴미디어 콘텐츠에서 재현되는 과산화수소 분해 실험의 이미지 -시뮬라크르와 시뮬라시옹을 중심으로-)

  • Shin, Sein;Ha, Minsu;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.13-28
    • /
    • 2020
  • This study attempted to understand the characteristics of images of scientific experiments represented and consumed on YouTube, a representative of today's new media. In particular, this paper analyzes the case studies of YouTube's hydrogen peroxide decomposition experiment based on Baudrillard's theory of Simulation and Simulacra, which discusses the strong status of images and the ambiguity of the boundary between virtual and reality. A total of 14 YouTube videos related to hydrogen peroxide decomposition experiments were analyzed. In those videos, hydrogen peroxide decomposition experiments were typically conducted with several signs representing scientific experiments, but the most important sign in the videos were bubbles produced through experiments. For more public consumption of the content, the bubbles resulted from hydrogen peroxide decomposition reproduced in YouTube have been transformed into a more spectacular image as 'super-huge' and 'explosive' bubble. Considering the influence of new media that can be accessed by students anytime and anywhere, it is positive that science experiments in new media enhance students' intimacy and access to science. At the same time, however, it is also important to note the danger that the purpose of scientific experiments will be limited to only 'showing specular images', due to the nature of new media, which mainly deals with immediate and superficial images. Furthermore, this study argues that improving students' science media literacy is required to critically examine the science-related images represented in the new media based on understanding the characteristics and limitations of new media that deeply affect daily life.

Development of Alignment Information Extraction System on Highway by Terrestrial Laser Scanning Technique (지상 레이저 스캐닝 기법에 의한 도로선형정보 추출 시스템 개발)

  • Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.97-110
    • /
    • 2007
  • A laser scanning technique has been attracting much attention as a new technology to acquire location information. This technique might be applicable to a wide range of areas, most notably in geomatics, due to its high accuracy of location and automation of high-density data acquisition. A alignment information extraction system on highway has been developed in this study by utilizing the advantages of the laser scanning technique. The system can accurately interpret the alignment information of highway and can be applied to actual works. To develop the alignment information extraction system on highway, an algorithm that can automatically separate a horizontal alignment into a straight line, a transition curve, and a circular curve was developed. It can increase its efficiency compared to the conventional methods. In addition, an algorithm that can automatically extract design elements of horizontal and vertical alignments of highway was developed and applied to an object highway. This yielded higher practicality with more accurate values compared to those from previous studies on the extraction of design elements of highway alignment. Furthermore, the extracted design elements were used to perform a virtual driving simulation on the object highway. Through this, data were provided for a visual judgment for judging visually whether the topography and structures were harmonized in a three-dimensional manner or not. The study also presents data that can serve as a basis to determine highway surface freezing sections and to analyze three-dimensional sight distance models. Through the establishment of a systematic database for diverse data on highway and the development of web-based operating programs, an efficient highway maintenance can be ensured and also they can provide important information to be used when estimating a highway safety in the future.

  • PDF

CdZnTe Detector for Computed Tomography based on Weighting Potential (가중 퍼텐셜에 기초한 CT용 CdZnTe 소자 설계)

  • Lim, Hyunjong;Park, Chansun;Kim, Jungsu;Kim, Jungmin;Choi, Jonghak;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Room-temperature operating CdZnTe(CZT) material is an innovative radiation detector which could reduce the patient dose to one-tenth level of conventional CT (Computed Tomography) and mammography system. The pixel and pixel pitch in the imaging device determine the conversion efficiency of incident X-or gamma-ray and the cross-talk of signal, that is, image quality of detector system. The weighting potential is the virtual potential determined by the position and geometry of electrode. The weighting potential obtained by computer-based simulation in solving Poisson equation with proper boundaries condition. The pixel was optimized by considering the CIE (charge induced efficiency) and the signal cross-talk in CT detector system. The pixel pitch was 1-mm and the detector thickness was 2-mm in the simulation. The optimized pixel size and inter-pixel distance for maximizing the CIE and minimizing the signal cross-talk is about $750{\mu}m$ and $125{\mu}m$, respectively.

Application of SWAT Model considering Spatial Distribution of Rainfall (강우의 공간분포를 고려한 SWAT 모형의 적용)

  • JANG, Daewon;KIM, Duckgil;KIM, Yonsoo;Choi, Wooil
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.94-104
    • /
    • 2018
  • In general, the rainfall-runoff simulation is performed using rainfall data from meteorological and observational rain gauge stations. However, if we only use rainfall data from meteorological and observational rain gauge stations for runoff simulation of a large watershed, the problem in the reliability of the simulated runoff can be occurred. Therefore, this study examined the influence of the rainfall data on the simulated runoff volume by a Semi-distributed model. For this, we used rainfall data from meteorological stations, meteorological and observational stations, and a spatially distributed rainfall data from hypothetical stations obtained by kriging method. And, we estimated the areal rainfall of each sub-basin. Also the estimated areal rainfall and the observed rainfall were compared and we compared the simulated runoff volumes using SWAT model by the rainfall data from meteorological and observational rain gauge stations and runoff volume from the estimated areal rainfall by Kriging method were analyzed. This study was performed to examine the accuracy of calculated runoff volume by spatially distributed areal rainfall. The analysis result of this study showed that runoff volume using areal rainfall is similar to observed runoff volume than runoff volume using the rainfall data of weather and rain gauging station. this means that spatially distributed rainfall reflect the real rainfall pattern.

Design and Implementation of a Virtual MCU Based on SystemC to Provide the Implementation Environment of MAC Layer Software (MAC 계층 소프트웨어의 구현 환경을 제공하기 위한 SystemC 기반의 가상 MCU 모듈의 설계 및 구현)

  • Jeong, Yoo-Jin;Park, Soo-Jin;Lee, Ho-Eung;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The development of wireless communication MAC layer is usually released as SoC which is a combination in hardware and software. In this system development environment, an environment for software development and verification is necessary because the hardware development takes a lot of time priori to completion. In integrated development of hardware and software, simulation environment of hardware and software provided by hardware modeling using HDL at RTL and ISS respectively. By increasing the development complexity of system, ESL design modeling systems at higher abstraction level than RTL has already prompted. The ESL design is divided untime model and time model. This paper present design and implementation of MCU for untime model simulation, not time model. Proposed MCU can optimize the system at early step of system development and move up the development completion time by verifying the system function easily and rapidly than part required exact time in untime model. In this paper, we present an MCU module based on SystemC and UC/OS-II Module providing real-time operate system.

  • PDF

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

A Study on the Actual Condition of the Fourth Industrial Revolution and Application of Landscape Architecture (4차 산업혁명의 실태와 조경학 분야 적용방안 연구)

  • Lee, Jong-Sung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.68-75
    • /
    • 2019
  • This study aims to look at the application methods of landscape architecture in response to the 4th Industrial Revolution. The results of the analysis of trends in the 4th Industrial Revolution and the subsequent search for application methods to the field of landscape architecture are as follows. First, the 4th Industrial Revolution means innovative change based on digital technology and seeks to create value based on intelligent information technology, and continuous growth is being made through innovation. This requires expertise to collect large amounts of information and creatively rework it, and a strategy to flexibly cope with changes in the times. Second, the status of technological use in response to the 4th Industrial Revolution in the field of landscape architecture is generalizing the establishment of precise analysis results such as survey technology and global mapping using drones, three-dimensional design simulation, and VR. In the field of traditional landscape architecture, efforts are made to obtain accurate fact-finding data on landscape site components. Third, the application methods in the field of landscape science according to the 4th Industrial Revolution in the future are required to supply precision technology and supply programs in the technology sector, and to provide a shared platform. In addition, a systemically standardized process will need to be established for this. In addition, educational efforts should be continued to professional manpower training and provide economic support for the development of technologies.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.