• Title/Summary/Keyword: virtual remote controller

Search Result 23, Processing Time 0.033 seconds

초고속 통신망을 이용한 CSCW 기반 CALS 시스템 개발

  • 배재호;왕지남
    • Korea Information Processing Society Review
    • /
    • v.5 no.1
    • /
    • pp.62-74
    • /
    • 1998
  • This paper deals with developing a remote & real-time Computer-Aided Logistics Support (CALS) Systems through Information Super-Highway. A prototype of CALS is designed and implemented considering the environment of Information Super Highway. The concept of CSCW based virtual enterprise is discussed in con-nection with the four different activities. development of remote & virtual equipment controller remote-monitoring & inspection real time tracking of logistics information and web-based bidding and delivery system. A real implemented system is demonstrated under the Infor-mation Super-Highway with the corresponding software and hardware configuration.

  • PDF

Investigating Key User Experience Factors for Virtual Reality Interactions

  • Ahn, Junyoung;Choi, Seungho;Lee, Minjae;Kim, Kyungdoh
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.267-280
    • /
    • 2017
  • Objective: The aim of this study is to investigate key user experience factors of interactions for Head Mounted Display (HMD) devices in the Virtual Reality Environment (VRE). Background: Virtual reality interaction research has been conducted steadily, while interaction methods and virtual reality devices have improved. Recently, all of the virtual reality devices are head mounted display based ones. Also, HMD-based interaction types include Remote Controller, Head Tracking, and Hand Gesture. However, there is few study on usability evaluation of virtual reality. Especially, the usability of HMD-based virtual reality was not investigated. Therefore, it is necessary to study the usability of HMD-based virtual reality. Method: HMD-based VR devices released recently have only three interaction types, 'Remote Controller', 'Head Tracking', and 'Hand Gesture'. We search 113 types of research to check the user experience factors or evaluation scales by interaction type. Finally, the key user experience factors or relevant evaluation scales are summarized considering the frequency used in the studies. Results: There are various key user experience factors by each interaction type. First, Remote controller's key user experience factors are 'Ease of learning', 'Ease of use', 'Satisfaction', 'Effectiveness', and 'Efficiency'. Also, Head tracking's key user experience factors are 'Sickness', 'Immersion', 'Intuitiveness', 'Stress', 'Fatigue', and 'Ease of learning'. Finally, Hand gesture's key user experience factors are 'Ease of learning', 'Ease of use', 'Feedback', 'Consistent', 'Simple', 'Natural', 'Efficiency', 'Responsiveness', 'Usefulness', 'Intuitiveness', and 'Adaptability'. Conclusion: We identified key user experience factors for each interaction type through literature review. However, we did not consider objective measures because each study adopted different performance factors. Application: The results of this study can be used when evaluating HMD-based interactions in virtual reality in terms of usability.

Internet-Based Remote Control System Using Power Line Communication (전력선 통신을 이용한 인터넷 기반 원격 제어 시스템)

  • 차주헌;전희연;김재덕;김근영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.523-528
    • /
    • 2001
  • In this paper, we describe the internet-based remote home automation system that con control and manage home appliances or digital devices bi-directionally through Internet. The platform-independency of VRML and Java applet enables users to access their home appliances and to check current state of them in t he virtual reality environment. The main focus is on three aspects. One is on the virtual reality technology to support the user interface efficiently by using 3D GUI in web-browser. Another is on the system architecture that consists of Home server and its manager server called Gate server in this paper. These servers have been implemented by Java RMI which is the basic single programming interface for distribution of objects and services using Java technology. The third, remote PLC controller and each digital devices are composed of home networking by PLC using CEBus protocol.

  • PDF

DESIGN OF DELAY-TOLERANT CONTROLLER FOR REMOTE CONTROL OF NUCLEAR REACTOR POWER

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • One of main concepts involved in regional small nuclear reactors is unmanned remote control. Internet-based virtual private networks provide environments for the remote monitoring and control of geographically-dispersed systems, and with the advances in communication technologies, the potential of networks for real time control and automation becomes enormous. However, networked control has some problems. The most critical is delay in signal transmission, which degrades system stability and performance. Therefore, a networked control system should be designed to account for delay. This paper proposes some design approaches for a delay-tolerant system that can guarantee predetermined stability margins and performance. To accomplish this, the reactor plant is modeled with consideration of uncertainties. With this model, three kinds of controllers are developed using different methods. The designed systems are compared with respect to stability and performance, and a second-order controller designed using the table lookup method was found to give the most satisfactory results.

A Development of The Remote Robot Control System with Virtual Reality Interface System (가상현실과 결합된 로봇제어 시스템의 구현방법)

  • 김우경;김훈표;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.320-324
    • /
    • 2003
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we got under control motion of reality robot from interface manipulation in the virtual world. This paper created virtual robot using of 3D Graphic Tool. And we reappeared a similar image with reality robot put on texture the use of components of Direct 3D Graphic. Also a reality robot and a virtual robot is controlled by joystick. The developed robot consists of robot controller with vision system and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designed joystick. An environment is recognized by the vision system and ultra sonic sensors. The visual mage and command data translated through 900MHz and 447MHz RF controller, respectively. If user send robot control command the use of simulator to control the reality robot, the transmitter/recever got under control until 500miter outdoor at the rate of 4800bps a second in Hlaf Duplex method via radio frequency module useing 447MHz frequency.

  • PDF

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

Safety Enhancement of Teleoperation using Haptic Control (햅틱 제어에 의한 원격작업의 안전성 향상)

  • Kim, Yun Bae;Choi, Gi Sang;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.19-25
    • /
    • 2013
  • For safe remote control, information on remote environment has to be delivered to operator realistically, and there have been numerous research efforts on this respect. Among them, haptic technology can significantly enhance safety and overall effectiveness of remote operation by delivering various kinds of information on virtual or real environment to operator. In this study, remote control based on haptic feedback is applied to control of mobile robot moving according to the command from operator avoiding collision with environmental obstacles and maintaining safe distance from them using ultrasonic sensors. Specifically, a remote feedback control structure for mobile robot is proposed. The controller is based on the inner feedback loop that directly utilizes information on distance to obstacles, and the outer feedback loop that the operator directly commands using the haptic device on which the computed reaction force based on the distance information is acting. Effectiveness of the proposed remote control scheme using double feedback loops is verified through a series of experiments on mobile robot.

Shared Vehicle Teleoperation using a Virtual Driving Interface (가상 운전 인터페이스를 활용한 자동차 협력 원격조종)

  • Kim, Jae-Seok;Lee, Kwang-Hyun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.243-249
    • /
    • 2015
  • In direct vehicle teleoperation, a human operator drives a vehicle at a distance through a pair of master and slave device. However, if there is time delay, it is difficult to remotely drive the vehicle due to slow response. In order to address this problem, we introduced a novel methodology of shared vehicle teleoperation using a virtual driving interface. The methodology was developed with four components: 1) virtual driving environment, 2) interface for virtual driving environment, 3) path generator based on virtual driving trajectory, 4) path following controller. Experimental results showed the effectiveness of the proposed approach in simple and cluttered driving environment as well. In the experiments, we compared two sampling methods, fixed sampling time and user defined instant, and finally merged method showed best remote driving performance in term of completion time and number of collision.

The Haptic Display Model Development with the Karnopp Friction Model and the Proxy Concept (카르노프 마찰모델과 탐촉구 개념을 이용한 햅틱 디스플레이 모델 개발)

  • Kwon, Hyo-Jo;Kim, Ki-Ho;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1344-1351
    • /
    • 2004
  • This study develops a haptic display model which is an indispensable for the force generation in the virtual environment. In developing the haptic display model, a Proxy concept and a Karnopp friction model are utilized to generate the reaction force and the friction force. Also this study develops a 2 D.O.F. remote wiping system. This system is composed of a 2 D.O.F. master manipulator, a force sensor equipped 2 D.O.F. slave manipulator and a real time controller. With the developed remote wiping system, this study identifies the friction characteristic of the aluminum, acryl and rubber plate. The results are used as the dynamic friction coefficient of the haptic display model. This study shows the efficiency of the developed haptic display model by the comparison between the friction characteristic of the haptic display with the developed haptic display model and the friction characteristic of the real aluminum, acryl and rubber plate.

A VIA-based RDMA Mechanism for High Performance PC Cluster Systems (고성능 PC 클러스터 시스템을 위한 VIA 기반 RDMA 메커니즘 구현)

  • Jung In-Hyung;Chung Sang-Hwa;Park Sejin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.11
    • /
    • pp.635-642
    • /
    • 2004
  • The traditional communication protocols such as TCP/IP are not suitable for PC cluster systems because of their high software processing overhead. To eliminate this overhead, industry leaders have defined the Virtual Interface Architecture (VIA). VIA provides two different data transfer mechanisms, a traditional Send/Receive model and the Remote Direct Memory Access (RDMA) model. RDMA is extremely efficient way to reduce software overhead because it can bypass the OS and use the network interface controller (NIC) directly for communication, also bypass the CPU on the remote host. In this paper, we have implemented VIA-based RDMA mechanism in hardware. Compared to the traditional Send/Receive model, the RDMA mechanism improves latency and bandwidth. Our RDMA mechanism can also communicate without using remote CPU cycles. Our experimental results show a minimum latency of 12.5${\mu}\textrm{s}$ and a maximum bandwidth of 95.5MB/s. As a result, our RDMA mechanism allows PC cluster systems to have a high performance communication method.