• Title/Summary/Keyword: virtual laboratory

Search Result 406, Processing Time 0.023 seconds

Effective Engineering Experiments Using Remote Virtual Instruments and DC-Motor (원격 가상 계측장치와 DC 모터를 이용한 효과적인 공학실험)

  • Choi, Seong-Joo;Mikhail, G.R.
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • Computer-based learning with the access to World Wide Web has become a fundamental base for adopting beneficial education. It provides significant facilities such as animation and interactive processes that are not possible with textbooks. Web/Internet-enabled applications which is fully controlled and monitored from remote locations are extensively used by a number of Universities, national laboratories and companies for different kinds of applications all over the world. Continuous advances in computers and electronics coupled with drooping prices of hardware have made Web/Internet-based technologies less costly than before, particularly for educational organizations. Thus, it is more affordable to invest in these technologies that are essential for both expanding education over Web and further improving and advancing such technologies the application of remote virtual instruments will be demonstrated in this context along with experiments that can be adopted to be educational experimental lab for Engineering Education students.

  • PDF

An Optimized Model for the Local Compression Deformation of Soft Tissue

  • Zhang, Xiaorui;Yu, Xuefeng;Sun, Wei;Song, Aiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.671-686
    • /
    • 2020
  • Due to the long training time and high training cost of traditional surgical training methods, the emerging virtual surgical training method has gradually replaced it as the mainstream. However, the virtual surgical system suffers from poor authenticity and high computational cost problems. For overcoming the deficiency of these problems, we propose an optimized model for the local compression deformation of soft tissue. This model uses a simulated annealing algorithm to optimize the parameters of the soft tissue model to improve the authenticity of the simulation. Meanwhile, although the soft tissue deformation is divided into local deformation region and non-deformation region, our proposed model only needs to calculate and update the deformation region, which can improve the simulation real-time performance. Besides, we define a compensation strategy for the "superelastic" effect which often occurs with the mass-spring model. To verify the validity of the model, we carry out a compression simulation experiment of abdomen and human foot and compare it with other models. The experimental results indicate the proposed model is realistic and effective in soft tissue compression simulation, and it outperforms other models in accuracy and real-time performance.

Identification of High Affinity Non-Peptidic Small Molecule Inhibitors of MDM2-p53 Interactions through Structure-Based Virtual Screening Strategies

  • Bandaru, Srinivas;Ponnala, Deepika;Lakkaraju, Chandana;Bhukya, Chaitanya Kumar;Shaheen, Uzma;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3759-3765
    • /
    • 2015
  • Background: Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic strategy in resurrecting wild type p53 functional status. The present study highlights virtual screening strategies in identification of high affinity small molecule non-peptidic inhibitors. Nutlin3A and RG7112 belonging to compound class of Cis-imidazoline, MI219 of Spiro-oxindole class and Benzodiazepine derived TDP 665759 served as query small molecules for similarity search with a threshold of 95%. The query molecules and the similar molecules corresponding to each query were docked at the transactivation binding cleft of MDM2 protein. Aided by MolDock algorithm, high affinity compound against MDM2 was retrieved. Patch Dock supervised Protein-Protein interactions were established between MDM2 and ligand (query and similar) bound and free states of p53. Compounds with PubCid 68870345, 77819398, 71132874, and 11952782 respectively structurally similar to Nutlin3A, RG7112, Mi219 and TDP 665759 demonstrated higher affinity to MDM2 in comparison to their parent compounds. Evident from the protein-protein interaction studies, all the similar compounds except for 77819398 (similar to RG 7112) showed appreciable inhibitory potential. Of particular relevance, compound 68870345 akin to Nutlin 3A had highest inhibitory potential that respectively showed 1.3, 1.2, 1.16 and 1.26 folds higher inhibitory potential than Nutilin 3A, MI 219, RG 7112 and TDP 1665759. Compound 68870345 was further mapped for structure based pharamacophoric features. In the study, we report Cis-imidazoline derivative compound; Pubcid: 68870345 to have highest inhibitory potential in blocking MDM2-p53 interactions hitherto discovered.

Research of Application the Virtual Reality Technology in Chemistry Education (화학 교육에서 가상현실 기법의 활용에 대한 연구)

  • Park, Jong Seok;Sim, Gyu Cheol;Kim, Jae Hyeon;Kim, Hyeon Seop;Ryu, Hae Il;Park, Yeong Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.450-468
    • /
    • 2002
  • As the computer is popularized in individual and society, it is using in a many of area. In particular, there are many materials to learn a science knowledge using multimedia through computer. Many of them are web-based learning materials, which are developed by Java or Flash. Since the technology of the representation, storage, com-putation and communication in computer make progress, the environment of education is also developed. Especially, the internet and VR technology will cause the education to change. A key feature of VR is real-time interactivity, in that the computer is able to detect student input and instantaneously modify the virtual world. It is reported that using the VR simulation in chemistry education can increase student engagement in class, promote understanding of basic chem-ical principles, and augment laboratory experience. In this study, application way of the virtual reality technology in chemistry education is examined.

Investigation and Standardization on Current Practice of Renal Transplant Pathology in Korea

  • Cho, Uiju;Suh, Kwang Sun;Kie, Jeong Hae;Choi, Yeong Jin;Renal Pathology Study Group of Korean Society of Pathologists,
    • Korean Journal of Transplantation
    • /
    • v.31 no.4
    • /
    • pp.170-176
    • /
    • 2017
  • We need to establish an informative guideline to increase inter-institutional and inter-observer reproducibility of renal transplant diagnosis, and to improve the diagnostic ability of pathologists in Korea. A first nation-wide survey for renal transplant pathology was conducted by Renal Pathology Study Group of the Korean Society of Pathologists in 2016, to provide the continued excellence in the transplantation pathology laboratory, and to improve the diagnostic ability for the best treatment of transplant patients. This survey revealed the significant variations in scale, work load and biopsy indications for the renal transplant pathology in various institutions in Korea. The Banff classification were used by all institutions for the diagnosis of renal transplant pathology, but different formats were used: most institutions (70%) used the "2013 Banff classification" while the others were using "2007 Banff classification" (20%) or even older formats. In daily diagnostic practice of the renal allografts, difficulties that pathologists encounter were quite diverse due to different environments they work in. Most respondents agreed that standardized diagnostic practice guidelines, regular education on renal transplant pathology and convenient ways of consultation are further needed. We are currently working toward the enhancement of the expertise of renal pathologists and to increase inter-institutional and inter-observer reproducibility by 1) development of a set of virtual slides of renal allograft biopsies for the training, 2) validation and gathering expert's consensus on the core variables of rejection diagnosis by using virtual slides, and 3) continued education by the developed virtual slide atlas.

The Effect of Anonymity on Virtual Team Performance in Online Communities (온라인 커뮤니티 내 익명성이 가상 팀 성과에 미치는 영향)

  • Lee, Un-Kon;Lee, Aeri;Kim, Kyong Kyu
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.217-241
    • /
    • 2015
  • One of the challenges in online community management is what level of perceived anonymity can be granted to encourage active participation from members while discouraging unhealthy activities. Few studies developed a scheme of anonymity and investigated how different levels of anonymity influence community activities. This study develops a classification scheme of anonymity encompassing the following three different levels : (1) real name(no anonymity), (2) nickname (partial anonymity), and (3) random assignment of a temporal ID (complete anonymity). Then, it examines how different levels of anonymity influence trust and perceived risk, which in turn affect virtual team performance. A series of laboratory experiments were performed, manipulating the levels of anonymity, in the context of well-structured communities that allow prior interactions among community members. The data was collected from 364 laboratory participants and analyzed using ANOVA and PLS. The results indicate that the difference of anonymity between (2) and (3) had not be significant and the only (1) could not guarantee the anonymity. The impact of anonymity on trust and perceived risk could not be significant in this situation. These findings could contribute to make more beneficial member identification strategies in online community practice.

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.471-487
    • /
    • 2020
  • In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory

  • Alwabli, Afaf S.;Kaci, Abdelhakim;Bellifa, Hichem;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alzahrani, Dhafer A.;Abulfaraj, Aala A.;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Mahmoud, S.R.;Hussain, Muzamal
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Microtubules (MTs) are the main part of the cytoskeleton in living eukaryotic cells. In this article, a mechanical model of MT buckling, considering the modified strain gradient theory, is analytically examined. The MT is assumed as a cylindrical beam and a new single variable trigonometric beam theory is developed in conjunction with a modified strain gradient model. The main benefit of the present formulation is shown in its new kinematic where we found only one unknown as the Euler-Bernoulli beam model, which is even less than the Timoshenko beam model. The governing equations are deduced by considering virtual work principle. The effectiveness of the present method is checked by comparing the obtained results with those reported by other higher shear deformation beam theory involving a higher number of unknowns. It is shown that microstructure-dependent response is more important when material length scale parameters are closer to the outer diameter of MTs. Also, it can be confirmed that influences of shear deformation become more considerable for smaller shear modulus and aspect ratios.