• Title/Summary/Keyword: virtual images

Search Result 818, Processing Time 0.022 seconds

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

A Comparison on Clothing Appearance of 2D Flat Sketch, 3D Virtual Clothing and Real Clothing -Based on the Evaluation of Chinese in Their 20s and 30s- (의복의 2D 도식화, 3D 가상착의, 실제착의 외관 평가 비교 -20~30대 중국인 평가를 중심으로-)

  • Wang, Xueying;Kwon, Chae-Ryung;Kim, Dong-Eun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.193-208
    • /
    • 2020
  • This study investigated similarities and differences between 2D flat sketch, 3D virtual clothing and real clothing images. Flat sketch, 3D virtual clothing, and real clothing images of T-shirts and dresses were made. Questionnaires were prepared for fit evaluation, sensory evaluation, and location evaluation. A survey of 440 questionnaires was collected from Chinese women in their 20s and 30s. As results of the sensibility evaluation, 3D virtual clothing expressed real clothing images slightly more similar than a 2D flat sketch. As results of the fit evaluation of the dresses, 2D flat sketch and 3D virtual clothing were rated as slightly longer/wider, and real clothing images were rated as slightly shorter/narrower. The results suggested that presenting 3D images with avatars as 3D virtual clothing images will provide more accurate fit evaluation results. This study presented possibilities and methods for apparel companies to utilize 3D system as an effective apparel production tool.

VIRTUAL VIEW RENDERING USING MULTIPLE STEREO IMAGES

  • Ham, Bum-Sub;Min, Dong-Bo;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.233-237
    • /
    • 2009
  • This paper represents a new approach which addresses quality degradation of a synthesized view, when a virtual camera moves forward. Generally, interpolation technique using only two neighboring views is used when a virtual view is synthesized. Because a size of the object increases when the virtual camera moves forward, most methods solved this by interpolation in order to synthesize a virtual view. However, as it generates a degraded view such as blurred images, we prevent a synthesized view from being blurred by using more cameras in multiview camera configuration. That is, we solve this by applying super-resolution concept which reconstructs a high resolution image from several low resolution images. Therefore, data fusion is executed by geometric warping using a disparity of the multiple images followed by deblur operation. Experimental results show that the image quality can further be improved by reducing blur in comparison with interpolation method.

  • PDF

Comparison of Slim Appearance for 2D Image and 3D Virtual Clothing Images Based on Stripe Arrangement (스트라이프 조건에 따른 2차원 이미지와 3차원 가상착의 이미지의 착용효과 비교)

  • Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.2
    • /
    • pp.321-330
    • /
    • 2022
  • This study analyzed the difference between 2D image and 3D virtual clothing images based on stripe arrangement to obtain fundamental data for slim appearance. First, the slimming effect according to the three types of stripe ratio was examined. Subsequently, the slimming effects of seven types of one-piece dress designs according to the stripe location were analyzed. Subjective ranking was evaluated. The width items and radius of curvature were measured for the image's respective parts. Consequently, in 2D image and 3D virtual clothing images, the one with the narrowest stripe ratio was evaluated as the slimmest; however, the conditions for the slimming effect were different. In the seven one-piece dress designs, a difference was apparent in the ranking of the 2D image and 3D virtual clothing images. In the 3D virtual clothing image, arranging the stripes on the entire garment proved inefficient. The stripes were curved according to the curvature of the human body, creating an optical illusion that differed from that of the 2D image.

Optical encryption system using visual cryptography and virtual phase images (시각 암호화와 가상 위상영상을 이용한 광 암호화 시스템)

  • 김인식;서동환;신창목;조규보;김수중;노덕수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 2003
  • We propose an encryption method using visual cryptography and virtual phase images. In the encryption process, the original image is shared by virtual images and the decryption key image. We multiply the virtual phase images with each complex image, which has the constant value of its sum after performing the phase modulation of the virtual images and the decryption key. The encryption cards are made by Fourier transforming the multiplied images. It is possible to protect information about the original image because the cards do not have any information from the original image. To reconstruct the original image, all the encryption cards are placed on each path of a Mach-Zehnder interferometer and then the lights passing through them are summed. Since the summed image is inverse Fourier transformed by a Fourier lens, the phase image is multiplied with the decryption key and the output image is obtained in the form of intensity on the CCD plane. Computer simulations show a good performance of the pro-posed optical security system.

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.

The Interactive Virtual Space with Scent Display for Song-Do Tomorrow-City Experience Complex (향 디스플레이가 가능한 송도 Tomorrow-city 체험관의 상호작용 가상공간)

  • Kim, Jeong-Do;Park, Sung-Dae;Lee, Jung-Hwan;Kim, Jung-Ju;Lee, Sang-Goog
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • Recently, we designed an interactive virtual space for the multi-purpose hall in Songdo Future City, located in Incheon, Korea. The goal of the design is to make a virtual space that is flexible and can be adjusted thanks to its unfixed seats in order to accommodate different and unspecified audience sizes. Virtual images are interactively adjusted according to the distance, position and size of audiences, information about which is detected by 9 photo sensors. To increase the sense of immersion, intensity and reality, we utilized the technology of scent display that can create appropriate scents to match the images on the screen. The intensity and persistence of scents were determined by the size, distance and position of audiences. The virtual image contains background images and reactive images. The background images repeatedly project images of spring, summer, autumn and winter. The reactive images consist of small portraits or pictures or icons that define or characterize the season types, and these are added to the background image according to the distance, position and size of the audiences.

Social Self Image and Avatar Image in the Virtual World: Focus on Ideal-Self Image and Actual-Self Image (사회적 자기이미지와 가상공간에서의 아바타 이미지 - 이상적 이미지와 실제적 이미지를 중심으로 -)

  • Youn, Sonn-Ie;Park, Ju-Yeon;Lee, Kyu-Hye
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.9
    • /
    • pp.1-14
    • /
    • 2011
  • The purpose of this study was to understand the relationship between one's social-self image and Online Avatar image. Influence of these virtual images on one's attitude toward real world and commitment to the virtual world was examined. In addition, the gender difference was examined. A structural equation model with social self image as exogenous variable and influence of Avatar as endogenous variable was designed. Real and ideal Avatar images were the mediating variable in the model. Survey questionnaire was developed and data from 425 respondents were analyzed. Results indicated that the conceptual model was a good fit to the data. Respondents who perceived their social self-images importantly were likely to have real images of Avatars. Ideal image and real image had significant on commitment to virtual world and attitudes toward the real world. For male respondents, social self image had stronger influence on real image of Avatar and ideal image had stronger influence on commitment to virtual world than female respondents.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Fast Measurement of Eyebox and Field of View (FOV) of Virtual and Augmented Reality Devices Using the Ray Trajectories Extending from Positions on Virtual Image

  • Hong, Hyungki
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • Exact optical characterization of virtual and augmented reality devices using conventional luminance measuring methods is a time-consuming process. A new measurement method is proposed to estimate in a relatively short time the boundary of ray trajectories emitting from a specific position on a virtual images. It is assumed that the virtual image can be modeled to be formed in front of one's eyes and seen through some optical aperture (field stop) that limits the field of view. Circular and rectangular shaped virtual images were investigated. From the estimated ray boundary, optical characteristics, such as the viewing direction and three dimensional range inside which a eye can observe the specified positions of the virtual image, were derived. The proposed method can provide useful data for avoiding the unnecessary measurements required for the previously reported method. Therefore, this method can be complementary to the previously reported method for reducing the whole measurement time of optical characteristics.