• Title/Summary/Keyword: viral pathogenesis

Search Result 109, Processing Time 0.026 seconds

Efficacy of Acyclovir on Virus Replication in Infected Tissues and Virus Reactivation from Explanted Tissues in Mouse Encephalitis Model of Herpes Simplex Virus Type 1 (Herpes Simplex Virus Type 1 마우스 뇌염모델에서의 조직내 바이러스 증식 및 재활성에 미치는 Acyclovir의 약효)

  • Lee, Chong-Kyo;Kim, Jee-Hyun;Bae, Pan-Kee;Pi, Mi-Kyung;Kim, Hae-Soo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • To investigate viral pathogenesis and in vivo efficacy of acyclovir (ACV) in mouse HSV-1 encephalitis models, female BALB/c mice aged 5 weeks were inoculated with strain F either intranasally (IN) or intracerebrally (IC). ACV-treatment by intraperitomeal injection with 0, 5, 10 and 25 mg/kg b.i.d. for 6 days was commenced 1 h after infection. Body weight and signs of clinical disease were noted daily up to 2 weeks. $ED_{50}$ of ACV in IN infection was <5 mg/kg and 14.1 mg/kg in IC infection. Tissues of central nervous system were collected from 2 mice per group everyday up to 5 day p.i. and the virus titers were measured. In IN infection model, high titers in eyes and trigeminal nerves were observed. ACV-treatment showed significant reduction of the titers in all the isolated. In IC infection model, cerebrum, cerebellum and brain stem showed high virus titers. ACV-treatment showed less significant reduction of virus titers than that in IN infection model. Reactivation of explanted trigeminal nerves from mice 30 day p.i. was monitored. In all of ACV treated mice reactivation was observed, i.e. even the highest dose of ACV did not inhibit the establishment of viral latency.

  • PDF

Immunopathogenesis of COVID-19 and early immunomodulators

  • Lee, Kyung-Yil;Rhim, Jung-Woo;Kang, Jin-Han
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.7
    • /
    • pp.239-250
    • /
    • 2020
  • The novel coronavirus disease 2019 (COVID-19) is spreading globally. Although its etiologic agent is discovered as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), there are many unsolved issues in COVID-19 and other infectious diseases. The causes of different clinical phenotypes and incubation periods among individuals, species specificity, and cytokine storm with lymphopenia as well as the mechanism of damage to organ cells are unknown. It has been suggested that in viral pneumonia, virus itself is not a direct cause of acute lung injury; rather, aberrant immune reactions of the host to the insults from viral infection are responsible. According to its epidemiological and clinical characteristics, SARS-CoV-2 may be a virus with low virulence in nature that has adapted to the human species. Current immunological concepts have limited ability to explain such unsolved issues, and a presumed immunopathogenesis of COVID-19 is presented under the protein-homeostasis-system hypothesis. Every disease, including COVID-19, has etiological substances controlled by the host immune system according to size and biochemical properties. Patients with severe pneumonia caused by SARS-CoV-2 show more severe hypercytokinemia with corresponding lymphocytopenia than patients with mild pneumonia; thus, early immunomodulator treatment, including corticosteroids, has been considered. However, current guidelines recommend their use only for patients with advanced pneumonia or acute respiratory distress syndrome. Since the immunopathogenesis of pneumonia may be the same for all patients regardless of age or severity and the critical immune-mediated lung injury may begin in the early stage of the disease, early immunomodulator treatment, including corticosteroids and intravenous immunoglobulin, can help reduce morbidity and possibly mortality rates of older patients with underlying conditions.

Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease (구제역의 병리기전 및 진단, 예방백신 개발)

  • Moon, Sun-Hwa;Yang, Joo-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.301-310
    • /
    • 2005
  • Foot-and-mouth disease (FMD) is a highly contagious disease of mammals and has a great potential for causing severe economic loss in susceptible cloven-hoofed animals, such as cattle, pigs, sheep, goats and buffalo. FMDV, a member of the Aphthovirus genus in the Picornaviridae family, is a non-enveloped icosahedral virus that contains a positive sense RNA of about 8.2 kb in size. The genome carries one open reading frame consisting of 3 regions: capsid protein coding region P1, replication related protein coding region P2, and RNA-dependent RNA polymerase coding region P3. FMDV infects pharynx epithelial cell in the respiratory tract and viral replication is active in lung epithelial cell. Morbidity is extremely high. A FMD outbreak in Korea in 2002 caused severe economic loss. Although intense research is undergoing to develop appropriate drugs to treat FMDV infection, there is no specific therapeutic for controlling FMDV infection. Moreover, there is an increasing demand for the development of vaccine strategies against FMDV infection in many countries. In this report, more effective prevention strategies against FMDV infection were reviewed.

Developing New Mammalian Gene Expression Systems Using the Infectious cDNA Molecular Clone of the Japanese Encephalitis Virus

  • Yun Sang-Im;Choi Yu-Jeong;Park Jun-Sun;Kim Seok-Yong;Lee Young-Min
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • Major advances in positive-sense RNA virus research have been facilitated by the development of reverse genetics systems. These systems consist of an infectious cDNA clone that encompasses the genome of the virus in question. This clone is then used as a template for the subsequent synthesis of infectious RNA for the generation of synthetic viruses. However, the construction of infectious cDNA for the Japanese encephalitis virus (JEV) has been repeatedly thwarted by the instability of its cDNA. As JEV is an important human pathogen that causes permanent neuropsychiatric sequelae and even fatal disease, a reliable reverse genetics system for this virus is highly desirable. The availability of this tool would greatly and the development of effective vaccines as well as facilitate studies into the basic biology of the virus, including the molecular mechanisms of viral replication, neurovirulence, and pathogenesis. We have successfully constructed a genetically stable infectious JEV cDNA containing full-length viral RNA genome. Synthetic RNA transcripts generated in vitro from the cDNA were highly infectious upon transfection into susceptible cells, and the cDNA remained stable after it had been propagated in E. coli for 180 generations. Using this infectious JEV cDNA, we have successfully expressed a variety of reporter genes from the full-length genomic and various subgenomic RNAs in vitro transcribed from functional JEV cDNAS. In summary, we have developed a reverse genetics system for JEV that will greatly facilitate the research on this virus in a variety of different fields. It will also be useful as a heterologous gene expression vector and aid the development of a vaccine against JEV.

  • PDF

Electron Microscopic Study on the Replcation of Hantaan Virus in Vero-E6 Cells (Vero-E6 세포에서 한탄바이러스의 증식에 관한 전자현미경적 연구)

  • Park, Kyung-Hee;Seong, In-Wha
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.201-209
    • /
    • 1999
  • Results of the studies on the morphologic and molecular biologic characteristics of Hantaan virus (HTNV), one of the etiologic agents of Hemorrhagic fever with renal syndrome (HFRS), revealed that HTNV was a member of Family Bunyaviridae and its RNA divided into three segments. And the nucleotide sequences of these segments also were known and the differences in nucleotide sequences of HTNV from other members of genus Hantavirus were clearly evaluated. But the morphorgenesis, pathogenesis of HFRS and the replication time had not been clearly determined. In this study, to estimate the replication time of HTNV in Vero E-6 cells, Vero cells were infected with HTNV 76/118 strain, and cells were harvested from two hours post-infection up to 24 hours at two hours-intervals. Harvested cells were treated with ordinary techniques for electron microscopy and immune-electron microscopy. And then thin sections were observed under transmission electron microscope. HTNV particles were not found in the cytoplasm and in the extracellular space between $2{\sim}8$ hours after inoculation of virus, but virus particles were observed in extracellular space near the cell membrane of Vero-E6 cells 10 hours after infection. In immune electron microscopy, mature HTNV particles in extracellular spaces and immature virus labelled with gold particles in the cytoplasm of Vero E-6 cell 10 hours after infection of HTNV could be seen. This results suggest that the replication time of HTNV might be about 10 hours.

  • PDF

Increased Interlenkin-2 Serum Level in Male Schizophrenic Patients (남자 정신분열증 환자에서 혈청 Interlenkin-2 농도의 증가)

  • Kim, Yong-Ku;Kim, Sa-Jun;Lee, Min-Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.109-114
    • /
    • 1996
  • We have previously reported that Korean schizophrenic patients hove low production of IL-2 in vitro suggestive of autoimmunity to the pathogenesis of the disorder. In an attempt to further explore this issue, we measured in vivo serum levels of interleukins(IL-$1{\beta}$, IL-2, and IL-6) using a quantitative "sandwich" enzyme immunoassay(ELISA) in 26 male schizophrenic patients and in 26 age-matched normal controls. Patients met DSM-IV criteria for schizophrenia and were drug free for at least six months. The severity of symptoms was assessed by SANS and SAPS. We found a significant increase of IL-2 level(p<0.05) in schizophrenic patients as compared with normal controls. There were significant positive correlations between IL-2, IL-6 levels and negative symptom scores. There were no correlations between age, age at onset, duration of illness and interleukin levels. Our results may support the hypothesis of viral-autoimmune dysfunction in schizophrenia. IL-2 or IL-6 may be associated with specific clinical feature in schizophrenic syndrome, especially negative symptom.

  • PDF

Viral Effects of a dsRNA Mycovirus (PoV-ASI2792) on the Vegetative Growth of the Edible Mushroom Pleurotus ostreatus

  • Song, Ha-Yeon;Choi, Hyo-Jin;Jeong, Hansaem;Choi, Dahye;Kim, Dae-Hyuk;Kim, Jung-Mi
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.283-290
    • /
    • 2016
  • A double-stranded RNA (dsRNA) mycovirus was detected in malformed fruiting bodies of Pleurotus ostreatus strain ASI2792, one of bottle cultivated commercial strains of the edible oyster mushroom. The partial RNA-dependent RNA polymerase (RdRp) gene of the P. ostreatus ASI2792 mycovirus (PoV-ASI2792) was cloned, and a cDNA sequences alignment revealed that the sequence was identical to the RdRp gene of a known PoSV found in the P. ostreatus strain. To investigate the symptoms of PoV-ASI2792 infection by comparing the isogenic virus-free P. ostreatus strains with a virus-infected strain, isogenic virus-cured P. ostreatus strains were obtained by the mycelial fragmentation method for virus curing. The absence of virus was verified with gel electrophoresis after dsRNA-specific virus purification and Northern blot analysis using a partial RdRp cDNA of PoV-ASI2792. The growth rate and mycelial dry weight of virus-infected P. ostreatus strain with PoV-ASI2792 mycovirus were compared to those of three virus-free isogenic strains on 10 different media. The virus-cured strains showed distinctly higher mycelial growth rates and dry weights on all kinds of experimental culture media, with at least a 2.2-fold higher mycelial growth rate on mushroom complete media (MCM) and Hamada media, and a 2.7-fold higher mycelial dry weight on MCM and yeast-malt-glucose agar media than those of the virus-infected strain. These results suggest that the infection of PoV mycovirus has a deleterious effect on the vegetative growth of P. ostreatus.

Establishment of inflammatory model induced by Pseudorabies virus infection in mice

  • Ren, Chun-Zhi;Hu, Wen-Yue;Zhang, Jin-Wu;Wei, Ying-Yi;Yu, Mei-Ling;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2021
  • Background: Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. Objectives: Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. Methods: Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. Results: At 105-106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 102 TCID50 of PRV produced a significant inflammatory mediator increase. Conclusions: An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Studies on the pathogenesis of group A avian rotavirus infection in turkeys (Group A 조류 로타 바이러스의 병원성에 관한 연구)

  • Kang, Shien-young;Nagaraja, Kakambi V.;Newman, John A.
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.217-225
    • /
    • 1993
  • Commercial turkey poults not previously exposed to avian rotavirus were inoculated orally with the virus alone or in combination with E coki serotype 078 at 1, 7, 14 and 21 days of age. Turkey poults of 1, 7 and 14 days of age were susceptible to infection despite the presence of maternal antibodies against avian rotavirus in their serum. However, turkey poults at 21 days of age were less susceptible compared to those ages 1, 7 and 14 days. The clinical signs in poults of all ages were mild. Viral antigens were demonstrated in the mature villous epithelial cells of the duodenum, jejunum and ilem. Histopathological lesions were characterized by vacuolation of the epithelial cells and heterophil infiltration in infected turkey poults. A significant difference in D-xylose absorption was observed between control and rotavirus infected groups at 1 and 3 days post-infection in 14 days old turkey poults.

  • PDF