• Title/Summary/Keyword: viral RNA

Search Result 474, Processing Time 0.02 seconds

Antiviral Efficacy of Pralatrexate against SARS-CoV-2

  • Bae, Joon-Yong;Lee, Gee Eun;Park, Heedo;Cho, Juyoung;Kim, Jeonghun;Lee, Jungmin;Kim, Kisoon;Kim, Jin Il;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.268-272
    • /
    • 2021
  • Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

Transcriptional Analysis for Oral Vaccination of Recombinant Viral Proteins against White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei

  • Choi, Mi-Ran;Kim, Yeong-Jin;Jang, Ji-Suk;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.170-175
    • /
    • 2011
  • This study was carried out for the molecular level identification of recombinant protein vaccine efficacy, by oral feeding against white spot syndrome virus infection, with the comparison of viral mRNA transcriptional levels in shrimp cells. For the determination of WSSV dilution ratio for the vaccination experiment by oral feeding, in vivo virus titration was carried out using different virus dilutions of virus stock ($1{\times}10^2$, $2{\times}10^2$, and $1{\times}10^3$). Among the dilution ratios, $2{\times}10^2$ diluted WSSV stock was chosen as the optimal condition because this dilution showed 90% mortality at 10 days after virus injection. Recombinant viral proteins, rVP19 and rVP28, produced as protein vaccines were delivered in shrimps by oral feeding. The cumulative mortalities of the shrimps vaccinated with rVP19 and rVP28 at 21 days after the challenge with WSSV were 66.7% and 41.7%, respectively. This indicates that rVP28 showed a better protective effect against WSSV in shrimp than rVP19. Through the comparison of mRNA transcriptional levels of viral genes from collected shrimp organ samples, it was confirmed that viral gene transcriptions of vaccinated shrimps were delayed for 4~10 days compared with those of unvaccinated shrimps. Protection from WSSV infection in shrimp by the vaccination with recombinant viral proteins could be accomplished by the prevention of entry of WSSV due to the shrimp immune system activated by recombinant protein vaccines.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Characterization and RT-PCR Detection of Turnip Mosaic Virus Isolated from Chinese Cabbage in Korea (배추에서 분리한 순무 모자이크 바이러스의 특성 및 역전사 중합효소 연쇄반응법(RT-PCR)을 이용한 검정)

  • 박원목;최설란;김수중;최승국;류기현
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.223-228
    • /
    • 1998
  • Turnip mosaic virus)TuMV-Ca) was isolated from a Chinese cabbage showing severe mosaic and black necrotic spots symptoms in Korea. The virus was identified as a strain of TuMV by its host range test, particle morphology, serology, double stranded RNA analysis. For detection of the virus, reverse transcription and polymerase chain reaction(RT-PCR) was performed with a set of 18-mer TuMV-specific primers to amplify a 876 bp DNA fragment The virus was rapidly detected from total nucleic acids of virus infected tissues as well as native viral RNA of purified virion particles by RT-PCR. Detection limit of the viral RNA by RT-PCR was 10 fg.

  • PDF

Next-generation Vaccines for Infectious Viral Diseases (차세대 감염병 백신)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.746-753
    • /
    • 2023
  • Viral infectious diseases have been regarded as one of the greatest threats to global public health. The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a stark reminder of the threat posed by emerging viral infections. Developing and producing appropriate and efficient vaccines and therapeutics are the only options to combat this pandemic. The COVID-19 pandemic has highlighted the need for novel vaccine platforms to control and prevent emerging viral diseases. Conventional vaccine platforms, including live-attenuated vaccine and inactivated vaccines, pose limitations in the speed of vaccine development, manufacturing capacity, and broad protection for emergency use. Interestingly, vaccination with the SARS-CoV-2 vaccine candidate based on the mRNA-lipid nanoparticle (LNP) platform protected against COVID-19, confirming that the nucleoside-modified candidate is a safe and effective alternative to conventional vaccines. Moreover, the prophylactic strategies against the COVID-19 pandemic have been mRNA nucleic acid-based vaccines and nanoparticle-based platforms, which are effective against SARS-CoV-2 and its variants. Overall, the novel vaccine platform has presented advantages compared with the traditional vaccine platform in the COVID-19 pandemic. This review explores the recent advancements in vaccine technologies and platforms, focusing on mRNA vaccines, digital vaccines, and nanoparticles while considering their advantages and possible drawbacks.

Real-Time RT-PCR for Quantitative Detection of Bovine Viral Diarrhoea Virus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Viral Diarrhoea Virus 정량 검출을 위한 Real-Time RT-PCR)

  • Cho, Hang-Mee;Lee, Dong-Hyuck;Kim, Hyun-Mi;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologics using bovine materials have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine viral diarrhoea virus (BVDV) is the most common bovine pathogen and has widely been known as a contaminant of biologics. In order to establish the validation system for the BVDV safety of biologics, a real-time RT-PCR method was developed for quantitative detection of BVDV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BVDV RNA was selected, and BVDV RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1 $TCID_{50}/mL$. The rent-time RT-PCR method was validated to be reproducible and very specific to BVDV. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BVDV. BVDV RNA could be quantified in CHO cell as well as culture supernatant. Also the real-time RT-PCR assay could detect $10TCID_{50}/mL$ of BVDV artificially contaminated in bovine collagen.

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Identification of Tomato Aspermy Virus (TAV) and Chrysanthemum Virus B (CVB) from Dendranthema indicum in Korea

  • Chung, Bong-Nam;Park, Gug-Seoun;Park, Yong-Moon
    • The Plant Pathology Journal
    • /
    • v.15 no.2
    • /
    • pp.119-123
    • /
    • 1999
  • Chrysanthemums showing leaf mottling were collected from three southern locations in Korea in 1998. Two kinds of viruses were isolated from the leaves and were identified as tomato aspermy virus ch-TAV) and chrysanthemum virus B (ch-CVB), according to their host range, morphology, intracellular location, agar gel double diffusion test, and double-stranded RNA (dsRNA) analysis. The purified ch-TAV was spherical particles of approximately 29 nm in diameter and ch-CVB was filamentous particles of 685 nm long. Inclusion bodies were not observed in ch-TAV and/or ch-CVB infected chrysanthemum. ch-TAV showed positive serological reaction with TAV antiserum (ATCC-127) but not with CMV-pepper antiserum. In dsRNA analysis, four kinds of viral dsRNA were observed on ch-TAV and one viral dsRNA was shown on ch-CVB. Rate of co-infection with TAV and CVB in commercial chrysanthemums was 20.9%. On the other hand, infection with CVB alone was 97.2%. However, chrysanthemums naturally infected with TAV alone were not found.

  • PDF

Investigation of the effect of SRSF9 overexpression on HIV-1 production

  • Ga-Na, Kim;Kyung-Lee, Yu;Hae-In, Kim;Ji Chang, You
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.639-644
    • /
    • 2022
  • Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule.

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.