• Title/Summary/Keyword: vinyl chloride

Search Result 269, Processing Time 0.022 seconds

Lead-Selective Poly(vinyl chloride) Membrane Electrode Based on 1-Phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone

  • Zare, Hamid Reza;Ardakani, Mahammad Mazloum;Nasirizadeh, Navid;Safari, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A PVC membrane electrode for lead ion based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone (PQDBP) as ionophore was demonstrated. The optimum composition of the membrane was 30 wt% poly(vinyl chloride), 60 wt% dibutyl phthalate as a plasticizer, 4 wt% ionophore and 6 wt% sodium tetraphenylborate as additive. The electrode exhibits a Nernstian response (28.7 mV decade$^{-1}$) for Pb$^{2+}$ over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-6}$ M) with a detection limit of 6.0 ${\times}$ 10$^{-7}$ M. This sensor has a short response time and can be used for at least 2 months without any divergence in potentials. The proposed electrode could be used in a pH range of 3.0-6.0 and revealed good selectivities for Pb$^{+2}$ over a wide variety of other metal ions. It was successfully applied as an indicator electrode for the potentiometric titration of lead ion with potassium chromate and for the direct determination of lead in mine.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

A Study on the Concentration Analysis of Roadside Air Pollutants

  • CHOI, Jong-Sun;JUNG, Min-Jae;LEE, Jun-Cheol;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • Purpose: In this study, volatile organic compounds(VOCs) and aldehydes generated from roadside vehicles and other pollutants were measured and analyzed. Research design, data and methodology: As a result of measuring and analyzing three areas near the roadside, Vinyl chloride 0.00 ~ 0.02 ppb, Benzene 2.87 ~ 5.01 ppb. Toluene 4.51 ~ 8.62 ppb, Styrene 0.00 ~ 0.34 ppb, Formaldehyde 8.45 ~ 17.12 ug/m3, Acetaldehyde 7.01 ~ 17.64 ug/m3 were detected. When comparing the analysis results and the 6-month average concentration of the hazardous air monitoring network, the analysis results were about 26 times higher for Benzene, about 5 times for Toluene, and about 3.75 times for Styrene. In the case of vinyl chloride, it was confirmed that it was about 20 times lower than that of the hazardous atmosphere monitoring network. Results: Therefore, it is necessary to reexamine the installation location of the measurement network because people are exposed to pollutants on the actual roadside. It is judged that it is right to build a measurement network that is practically helpful to people by increasing the measurement items in the measurement network.

The Effect of Vacuum Films on Physicochemical and Microbiological Characteristics of Hanwoo (Korean Native Cattle)

  • Hwan Hee Yu;Sung Hun Yi;Sang-Dong Lim;Sang-Pil Hong
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.441-453
    • /
    • 2023
  • The objective of this study was to investigate the physicochemical and microbiological characteristics of round of Hanwoo by vacuum packaging film materials, polyvinylidene chloride (PVDC) and ethylene vinyl alcohol (EVOH). The packaged beef samples were stored in refrigerated conditions (2±1℃) for 12 weeks. Physicochemical analysis with pH, surface color, thiobarbituric acid reactive substances (TBARS) values, and volatile basic nitrogen (VBN) values and microbiological analysis with aerobic plate count (APC) and metagenomic analysis of packaged beef samples were performed. The pH and surface color did not change substantially during the 12 weeks and EVOH-packaged beef tended to be lower than those of PVDC-packaged beef. PVDC- and EVOH-packaged samples showed low TBARS and VBN values below standard limits. APC did not exceed 7 Log CFU/g for both samples during storage. In metagenomic analysis, Firmicutes and Lactobacillaceae were dominant phylum and family of the PVDC- and EVOH-packaged beef. In both packaged samples, Dellaglioa algida was the dominant species during storage, with the notable difference being the presence of Lactococcus piscium. Therefore, this study provided the information on the quality of vacuum-packaged beef according to different vacuum films for long-term refrigerated storage.

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Zero-Crack Construction on the Fundamental Mass Concrete Using Double Bubble Sheets and Applying Low Heat Mixture (저발열 배합 및 이중버블시트에 의한 기초 매트 매스 콘크리트의 무균열 시공)

  • Park, Yong-Kyu;Song, Sung-Bin;Baek, Byung-Hoon;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.5-8
    • /
    • 2006
  • This study investigates the field application, Songdo the # 1st WORLD, on zero-crack construction of the fundamental mass concrete using double bubble sheets and applying low heat mixture. Experimental results of hydration heat analysis showed that crack modulus of concrete incorporating 20% of blast furnace slag cement was 1.0 in 120 hours, representing 50% probability of crack occurrence, thus requiring additional measures. As for a curing method, a specimen insulating two layers of vinyl chloride+double bubble sheets exhibited only $16.5^{\circ}C$ difference between upper and lower sections, and it also showed favorable workability as well as competitive economic side. Therefore it was determined to use it for curing method in this field. For the curing results of practical field, using 2 layers of vinyl chloride+double bubble sheets and applying low heat mixture on the fundamental mass concrete in 3A residential building exhibited less than only $15^{\circ}C$ difference between surface and center section of that in 5 days elapse and less than $20^{\circ}C$ in 9 days. This means that the crack by hydration heat was prevented, and other fields structures also resisted the plastic shrinkage by insulating the vinyl, sinking crack by second temping, even drying shrinkage by the mixture of low unit water. Therefore the crack on the placement has not been found so far, since the construction was started before 6 month.

  • PDF

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

PET Fabric Supported Fixed Site Carrier Membrane for Selective Metal ion Transport

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • Development of a novel fixed site carrier membrane (FCM), supported by PET fabric for metal ion separation is reported. The membranes were prepared by dipping PET fabric into the methylene chloride solution of Poly(5-vinyl-m-phe-nylene-m'-phenylene-32-crown-10) (P(VCE)), a polymeric metal ion carrier. It was found that the flux of mono-valent metal ion transported across the membrane is signif=cantly differed from each other and the flux decreases in the order $Cs^+$>$Rb^+$>$K^+$>$Na^+$>$Li^+$ irrespective to the anion except perchlorate anion. It was explained in terms of the stability of the complex, formed by crown ether unit of the P(VCE) and the various metal ions, meanwhile, the lower rate of transport in the presence of perchlorate anion was ascribed to its low hydrophilicity.

Membrane from Liquid Crystal Composite of Cellulose Acetate and Poly (4-vinyl pyridine) (셀룰로오스 아세테이트와 폴리비닐 피리딘 액정중합체의 박막에 관한 연구)

  • Hong, Young-Keun;Cho, Bong-Heuy
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.43-48
    • /
    • 1991
  • Cellulose acetate (CA) and poly-4-vinyl pyridine (PVP) in various weight proportions were mixed in a mixed solvent of trifluoroacetic acid: methylene chloride/6:4 (v:v). CA was miscible with PVP in that solvent system. CA/PVP/solvent show liquid crystal in a certain range of concentration and the nature of that liquid crystal was cholesteric. Films of the liquid crystal composite cast from the liquid crystal solutions of CA/PVP were tested in a viewpoint of biomembrane. Results show that considering permselectivity CA/PVP membrane is better than that of CA and CA/PVP membrane is closer to cell membrane.

  • PDF

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun;Jung Yoon Ho;Kim Hak Yong;Lee Douk Rae;Dharmaraj Nallasamy;Choi Kyung Eun
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.