• 제목/요약/키워드: video-surveillance

검색결과 490건 처리시간 0.027초

다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 알고리듬 (The Interesting Moving Objects Tracking Algorithm using Color Informations on Multi-Video Camera)

  • 신창훈;이주신
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.267-274
    • /
    • 2004
  • 본 논문은 다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 이동물체 추적 알고리듬을 제안한다. 제안된 방법은 다중 비디오카메라로부터 입력되는 영상의 RGB 칼라 좌표계를 HSI 칼라 좌표계로 변환한 후, 영상의 색조 영역만을 가지고 배경영상과 물체가 존재하는 영상에서 차영상 기법과 가산투영 기법을 사용하여 이동물체를 검출한다. 검출된 이동물체 영역의 색조는 0도부터 360도 사이에서 24단계로 정규화 된다. 정규화된 이동물체의 색조 분포도를 구한 후, 가장 높은 분포를 갖는 3개의 정규화 레벨과 3개의 정규화 레벨 사이의 간격을 이동물체의 특징파라미터로 사용하였다. 각 카메라간의 이동물체 동일성 관별은 이동물체 특징파라미터를 가지고 판별하고, 추적 감시하였다. 제안된 방법의 타당성을 검토하기 위하여 실내에 각기 다른 장소에 4대의 카메라를 각각 설치하여 이동물체의 대상을 사람으로 놓고, 특정사람을 감시한 결과 각 카메라에서 검출된 특정사람의 색조분포도 변화는 10%내를 유지함을 보였고, 특징 파라미터로 4대의 카메라에서 특정사람이 자동 추적감시 됨을 확인하였다.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

CCTV 카메라를 활용한 3D 지리정보시스템 구현 (3D GIS system using the CCTV camera)

  • 김익순;신현식
    • 한국전자통신학회논문지
    • /
    • 제6권4호
    • /
    • pp.559-565
    • /
    • 2011
  • 본 논문은 CCTV의 카메라의 촬영영상을 통해 주위의 지형정보를 추출하여 3차원 지형도를 제작함으로써 효과적으로 지리정보를 구축할 수 있는 지리 정보 시스템을 제안하였다. 또한 카메라의 촬영영상을 통해 인식되는 객체를 추적하고, 추적의 성공여부에 따라 지형 변화의 여부를 인식하는 방법을 제안하였다. 이 방법을 산업 현장에 적용하면 실제 지형에 가까운 지리정보를 구축할 수 있을 뿐만 아니라 보안, 감시 및 추적 시스템으로 활용할 수 있다.

컨볼루션 신경망을 이용한 CCTV 영상 기반의 성별구분 (CCTV Based Gender Classification Using a Convolutional Neural Networks)

  • 강현곤;박장식;송종관;윤병우
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.1943-1950
    • /
    • 2016
  • Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거 (Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking)

  • 박기홍
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.387-392
    • /
    • 2014
  • 최근 지능형 비디오 감시를 위한 다양한 연구가 제안되고 있음에도 CCTV 영상에서 이상 징후 판단이 사람에 의해 이루어지고 있어 상황인식을 위한 방법 및 연구가 필요하다. 본 논문에서는 이동물체 검출 및 추적을 위해 RGB 칼라 모델 기반의 색도 영상과 엔트로피 영상을 도출하여 그림자 제거를 수행한 후 이동물체를 추적하는 방법을 제안한다. 이동물체 검출을 위해 잡음 및 주위환경변화에 민감하지만 순간적으로 발생되는 상황인지 환경에서 효과적인 차영상 모델을 적용하였다. 검출한 이동물체 영역에서 RGB 채널의 색도 영상을 기반으로 첫 번째 그림자 후보 영역을 선정하였고, 그레이레벨에서 엔트로피를 계산하여 두 번째 그림자 후보 영역을 추정하여 그림자를 제거하였다. 제안하는 방법의 타당성을 위해 고속도로에서 주행하는 자동차들을 대상으로 실험하였고, 실험 결과 색상과 엔트로피를 이용한 그림자를 제거와 이동물체 추적이 효과적으로 수행됨을 확인하였다.

비디오 시퀀스에서 움직임 정보를 이용한 침입탐지 알고리즘 (Intrusion Detection Algorithm based on Motion Information in Video Sequence)

  • 알라 킴;김윤호
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.284-288
    • /
    • 2010
  • 비디오 감시 장치는 사회안전망 구축분야에서 다양하게 응용되고 있다. 본 논문은 고정 카메라에서 취득된 시각정보를 이용한 침입 탐지 알고리즘을 제안하였다. 제안한 알고리즘은 비디오 시퀀스에서 AMF를 이용하여 모델링된 배경으로부터 물체 프레임 후보를 찾아내고, 감지된 물체는 움직임 정보의 분석으로 계산된다. 움직임 검출은 RGB 공간에서 2D 물체의 상대적 크기로 결정하였으며 물체 감지를 위한 임계값은 실험적인 방법으로 결정하였다. 실험 결과, 시 공간적 후보 정보들이 급격히 변화할 때, 물체 감지의 성능이 우수함을 확인할 수 있었다.

비디오 영상분석, 인식 및 추적을 위한 지능형 비디오 감시시스템 (Intelligent Video Surveillance System for Video Analysis, Recognition and Tracking)

  • 김태경;백준기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.498-500
    • /
    • 2012
  • 비디오 해석 및 추적기술은 특정한 시스템에서만 적용되는 것이 아니다. 이것은 비디오 내에서 의미 있는 정보를 능동적으로 감시 대상을 정의, 해석, 모델화, 추정 및 추적 할 수 있는 기반 기술을 의미하다. 일반적으로 감시시스템에서 감시 대상은 사람이나 차량이며, 상황에 따라 출입통제 구역으로 설정하기도 한다. 이는 연속된 영상에서 객체의 형태, 모양, 행동 분석, 움직임, 색상정보를 가지고 데이터 정의, 검출, 모델화를 통하여 인식, 식별 그리고 추적한다. 본 논문에서는 비디오 영상분석을 통해 단일카메라기반의 감시시스템과 PTZ 카메라기반 감시시스템 제안한다. 이때 단일 카메라기반의 감시는 배경생성방법을 이용하여 연속된 영상내의 객체를 지속적으로 관리가 가능하도록 설계하였고, PTZ 카메라기반의 감시는 카메라의 이동에 따른 배경안정화 방법과 카메라의 절대좌표를 활용하여 카메라 이동을 제어함과 동시에 오검출 문제를 해결하였다. 실험 및 결과분석으로는 시나리오 환경에서 배경생성방법을 이용한 검출의 정확성과 PTZ카메라 위치 변화에도 강인한 검출 결과를 비교 분석하였다.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.