• Title/Summary/Keyword: video-surveillance

Search Result 490, Processing Time 0.028 seconds

Improvement of Accuracy for Human Action Recognition by Histogram of Changing Points and Average Speed Descriptors

  • Vu, Thi Ly;Do, Trung Dung;Jin, Cheng-Bin;Li, Shengzhe;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF). This paper also proposes new descriptors to represent the change of points within each part of a human body, caused by actions named as Histogram of Changing Points (HCP) and so-called Average Speed (AS) which measures the average speed of actions. The descriptors are combined to build a strong descriptor to represent human actions by modeling the information about appearance, local motion, and changes on each part of the body, as well as motion speed. The effectiveness of these new descriptors is evaluated in the experiments on KTH and Hollywood datasets.

Fast Video Fire Detection Using Luminous Smoke and Textured Flame Features

  • Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5485-5506
    • /
    • 2016
  • In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

A Performance Analysis of Video Smoke Detection based on Back-Propagation Neural Network (오류 역전파 신경망 기반의 연기 검출 성능 분석)

  • Im, Jae-Yoo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2014
  • In this paper, we present performance analysis of video smoke detection based on BPN-Network that is using multi-smoke feature, and Neural Network. Conventional smoke detection method consist of simple or mixed functions using color, temporal, spatial characteristics. However, most of all, they don't consider the early fire conditions. In this paper, we analysis the smoke color and motion characteristics, and revised distinguish the candidate smoke region. Smoke diffusion, transparency and shape features are used for detection stage. Then it apply the BPN-Network (Back-Propagation Neural Network). The simulation results showed 91.31% accuracy and 2.62% of false detection rate.

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

Proposed CCPS model for comprehensive security management of CCTV (영상정보처리기기(CCTV)의 포괄적 보안관리를 위한 암호·인증·보호·체계(CCPS) 모델 제안)

  • Song, Won-Seok;Cho, Jun-Ha;Kang, Seong-Moon;Lee, MinWoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.657-660
    • /
    • 2021
  • A video information processing system (CCTV) requires comprehensive administrative, physical, and technical security management to collect, transmit and store sensitive information. However, there are no regulations related to video information processing, certification methods for the technology used, and application standards suitable for security technology. In this paper, we propose a cryptography, certification, protection, system (CCPS) model that can protect the system by including encryption technology for application to the video information processing system and authentication measures for the technology used in the system configuration.

  • PDF

Bit Assignment for Wyner-Ziv Video Coding (Wyner-Ziv 비디오 부호화를 위한 비트배정)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.128-138
    • /
    • 2010
  • In this paper, we propose a new bit assignment scheme for Wyner-Ziv video coding. Distributed video coding (DVC) is a new video coding paradigm which enables greatly low complexity encoding because it does not have any motion prediction module at encoder. Therefore, it is very well suited for many applications such as video communication, video surveillance, extremely low power consumption video coding, and other portable applications. Theoretically, the Wyner-Ziv video coding is proved to achieve the same rate-distortion (RD) performance comparable to that of the joint video coding. However, its RD performance has much gap compared to MC-DCT-based video coding such as H.264/AVC. Moreover, Transform Domain Wyner-Ziv (TDWZ) video coding which is a kind of DVC with transform module has difficulty of exact bit assignment because the entire image is treated as a same message. In this paper, we propose a feasible bit assignment algorithm using adaptive quantization matrix selection for the TDWZ video coding. The proposed method can calculate suitable bit amount for each region using the local characteristics of image. Simulation results show that the proposed method can enhance coding performance.

An Adaptive Background Formation Algorithm Considering Stationary Object (정지 물체를 고려한 적응적 배경생성 알고리즘)

  • Jeong, Jongmyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.55-62
    • /
    • 2014
  • In the intelligent video surveillance system, moving objects generally are detected by calculating difference between background and input image. However formation of reliable background is known to be still challenging task because it is hard to cope with the complicated background. In this paper we propose an adaptive background formation algorithm considering stationary object. At first, the initial background is formed by averaging the initial N frames. Object detection is performed by comparing the current input image and background. If the object is at a stop for a long time, we consider the object as stationary object and background is replaced with the stationary object. On the other hand, if the object is a moving object, the pixels in the object are not reflected for background modification. Because the proposed algorithm considers gradual illuminance change, slow moving object and stationary object, we can form background adaptively and robustly which has been shown by experimental results.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Study of Fast Face Detection in Video frames compressed by advanced CODEC (향상된 코덱으로 압축된 프레임에서 고속 얼굴 검출 기법 연구)

  • Yoon, So-Jeong;Yoo, Sung-Geun;Eom, Yumie
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.254-257
    • /
    • 2014
  • Recently, various applications using real-time face detection have been developed as face recognition technology and hardware grows. While network service is developing and video instruments costs lower, it is needed that smart surveillance camera and service using network camera based on IP and face detection technology. However, videos should be compressed for reducing network bandwidth and storage capacity in surveillance system. As it requires high-level improvement of system performance when all the compressed frames are processed in a face detection program, fast face detection method is needed. In this paper, not only a fast way of algorithm using Haar like features and adaboost learning and motion information but also an application on broadcast system is suggested.

  • PDF