• Title/Summary/Keyword: video-surveillance

Search Result 490, Processing Time 0.025 seconds

Color and Motion-based Fire Detection in Video Sequences (비디오 영상에서 컬러와 움직임 기반의 화재 검출)

  • Kim, Alla;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.471-477
    • /
    • 2011
  • A wide distribution of CCTV cameras in many public areas can be used not only for video surveillance systems but also for preserving fire occurrence. A proposed approach is based on visual information through a static camera. Video sequences are analyzed to find fire candidates and then spatial analyses procedure for detected fire-like color foreground is carried out. If spatial and temporal variances changes rapidly and close to fire motion, fire candidate is considered as fire.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

Effective Automatic Foreground Motion Detection Using the Statistic Information of Background

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.121-128
    • /
    • 2015
  • In this paper, we proposed and implemented the effective automatic foreground motion detection algorithm that detect the foreground motion by analyzing the digital video data that captured by the network camera. We classified the background as moving background, fixed background and normal background based on the standard deviation of background and used it to detect the foreground motion. According to the result of experiment, our algorithm decreased the fault detection of the moving background and increased the accuracy of the foreground motion detection. Also it could extract foreground more exactly by using the statistic information of background in the phase of our foreground extraction.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Hardware-Software Implementation of MPEG-4 Video Codec

  • Kim, Seong-Min;Park, Ju-Hyun;Park, Seong-Mo;Koo, Bon-Tae;Shin, Kyoung-Seon;Suh, Ki-Bum;Kim, Ig-Kyun;Eum, Nak-Woong;Kim, Kyung-Soo
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.489-502
    • /
    • 2003
  • This paper presents an MPEG-4 video codec, called MoVa, for video coding applications that adopts 3G-324M. We designed MoVa to be optimal by embedding a cost-effective ARM7TDMI core and partitioning it into hardwired blocks and firmware blocks to provide a reasonable tradeoff between computational requirements, power consumption, and programmability. Typical hardwired blocks are motion estimation and motion compensation, discrete cosine transform and quantization, and variable length coding and decoding, while intra refresh, rate control, error resilience, error concealment, etc. are implemented by software. MoVa has a pipeline structure and its operation is performed in four stages at encoding and in three stages at decoding. It meets the requirements of MPEG-4 SP@L2 and can perform either 30 frames/s (fps) of QCIF or SQCIF, or 7.5 fps (in codec mode) to 15 fps (in encode/decode mode) of CIF at a maximum clock rate of 27 MHz for 128 kbps or 144 kbps. MoVa can be applied to many video systems requiring a high bit rate and various video formats, such as videophone, videoconferencing, surveillance, news, and entertainment.

  • PDF

A Study on Efficient Learning Units for Behavior-Recognition of People in Video (비디오에서 동체의 행위인지를 위한 효율적 학습 단위에 관한 연구)

  • Kwon, Ick-Hwan;Hadjer, Boubenna;Lee, Dohoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • Behavior of intelligent video surveillance system is recognized by analyzing the pattern of the object of interest by using the frame information of video inputted from the camera and analyzes the behavior. Detection of object's certain behaviors in the crowd has become a critical problem because in the event of terror strikes. Recognition of object's certain behaviors is an important but difficult problem in the area of computer vision. As the realization of big data utilizing machine learning, data mining techniques, the amount of video through the CCTV, Smart-phone and Drone's video has increased dramatically. In this paper, we propose a multiple-sliding window method to recognize the cumulative change as one piece in order to improve the accuracy of the recognition. The experimental results demonstrated the method was robust and efficient learning units in the classification of certain behaviors.

Video Image Transmissions over DDS Protocol for Unmanned Air System (DDS 표준 기반 무인기 영상 데이터 전송 연구)

  • Go, Kyung-Min;Kwon, Cheol-Hee;Lee, Jong-Soon;Kim, Young-Taek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1732-1737
    • /
    • 2010
  • Currently, one of the main purposes of the military using Unmanned Air System (VAS) is to perform surveillance and reconnaissance of hostile enemy. To carry out their mission, Unmanned aerial vechicle (UAV) transmits video images to ground control station using ISR devices installed on the UAV. After receiving the images, the ground control station distribute them to various type of users. At this case, it is important to keep QoS. This paper presents data delivery and QoS managements using DDS for DDS for UAV video images. The experiment result, based on H.264 and JPEG2000, shows that DDS standard is able to be applied to video image transmission for UAS.

Small UAV tracking using Kernelized Correlation Filter (커널상관필터를 이용한 소형무인기 추적)

  • Sun, Sun-Gu;Lee, Eui-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Recently, visual object detection and tracking has become a vital role in many different applications. It spans various applications like robotics, video surveillance, and intelligent vehicle navigation. Especially, in current situation where the use of UAVs is expanding widely, detection and tracking to soot down illegal UAVs flying over the sky at airports, nuclear power plants and core facilities is becoming a very important task. The remarkable method in object tracking is correlation filter based tracker like KCF (Kernelized Correlation Filter). But it has problems related to target drift in tracking process for long-term tracking. To mitigate the target drift problem in video surveillance application, we propose a tracking method which uses KCF, adaptive thresholding and Kalman filter. In the experiment, the proposed method was verified by using monochrome video sequences which were obtained in the operational environment of UAV.

Automatic identification of ARPA radar tracking vessels by CCTV camera system (CCTV 카메라 시스템에 의한 ARPA 레이더 추적선박의 자동식별)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.177-187
    • /
    • 2009
  • This paper describes a automatic video surveillance system(AVSS) with long range and 360$^{\circ}$ coverage that is automatically rotated in an elevation over azimuth mode in response to the TTM(tracked target message) signal of vessels tracked by ARPA(automatic radar plotting aids) radar. This AVSS that is a video security and tracking system supported by ARPA radar, CCTV(closed-circuit television) camera system and other sensors to automatically identify and track, detect the potential dangerous situations such as collision accidents at sea and berthing/deberthing accidents in harbor, can be used in monitoring the illegal fishing vessels in inshore and offshore fishing ground, and in more improving the security and safety of domestic fishing vessels in EEZ(exclusive economic zone) area. The movement of the target vessel chosen by the ARPA radar operator in the AVSS can be automatically tracked by a CCTV camera system interfaced to the ECDIS(electronic chart display and information system) with the special functions such as graphic presentation of CCTV image, camera position, camera azimuth and angle of view on the ENC, automatic and manual controls of pan and tilt angles for CCTV system, and the capability that can replay and record continuously all information of a selected target. The test results showed that the AVSS developed experimentally in this study can be used as an extra navigation aid for the operator on the bridge under the confusing traffic situations, to improve the detection efficiency of small targets in sea clutter, to enhance greatly an operator s ability to identify visually vessels tracked by ARPA radar and to provide a recorded history for reference or evidentiary purposes in EEZ area.

The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 보행자 추적)

  • 신창훈;이주신
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1080-1088
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera against variance of intensity, shape and background is proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are segmented to 24 levels from $0^{\circ}$ to $360^{\circ}$. It is used to the feature parameter of the moving objects that are three segmented hue levels with the highest distribution and difference among three segmented hue levels. To examine propriety of the proposed method, human images with variance of intensity and shape and human images with variance of intensity, shape and background are targeted for moving objects. As surveillance results of the interesting human, hue distribution level variation of the detected interesting human at each camera is under 2 level, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at cameras, automatically.