• Title/Summary/Keyword: video tracking

Search Result 617, Processing Time 0.027 seconds

Implementation of Smart Video Surveillance System Based on Safety Map (안전지도와 연계한 지능형 영상보안 시스템 구현)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.169-174
    • /
    • 2018
  • There are many CCTV cameras connected to the video surveillance and monitoring center for the safety of citizens, and it is difficult for a few monitoring agents to monitor many channels of videos. In this paper, we propose an intelligent video surveillance system utilizing a safety map to efficiently monitor many channels of CCTV camera videos. The safety map establishes the frequency of crime occurrence as a database, expresses the degree of crime risk and makes it possible for agents of the video surveillance center to pay attention when a woman enters the crime risk area. The proposed gender classification method is processed in the order of pedestrian detection, tracking and classification with deep training. The pedestrian detection and tracking uses Adaboost algorithm and probabilistic data association filter, respectively. In order to classify the gender of the pedestrian, relatively simple AlexNet is applied to determine gender. Experimental results show that the proposed gender classification method is more effective than the conventional algorithm. In addition, the results of implementation of intelligent video security system combined with safety map are introduced.

A Study on the Moving Object Tracking System Using Multi-feature Matching (다양한 특징 매칭을 이용한 움직이는 물체 추적 시스템에 관한 연구)

  • Piao, Zai-Jun;Kim, Sun-Woo;Choi, Yeon-Sung;Park, Chun-Bae;Ha, Tae-Ryeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.786-792
    • /
    • 2007
  • Moving object tracking is very important in video surveillance system. This paper presents a method for tracking moving objects in an outdoor environment. To moving object tracking, first, after extract object that move yielding weight subtraction image and then use close operator to reduce the noise. And we track a object that move detected by matching the extracted multi-feature information. The proposed tracking technique can track moving object by multi-feature matching method so that exactly tracking the objects which are suddenly move or stop. The proposed tracking technique can be efficiently tracking the moving objects, because of combined with spatial position, shape and intensity informations.

Trajectory Recovery Using Goal-directed Tracking (목표-지향 추적 기법을 이용한 궤적 복원 방법)

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.575-582
    • /
    • 2015
  • Obtaining the complete trajectory of the object is a very important task in computer vision applications, such as video surveillance. Previous studies to recover the trajectory between two disconnected trajectory segments, however, do not takes into account the object's motion characteristics and uncertainty of trajectory segments. In this paper, we present a novel approach to recover the trajectory between two disjoint but associated trajectory segments, called goal-directed tracking. To incorporate the object's motion characteristics and uncertainty, the goal-directed state equation is first introduced. Then the goal-directed tracking framework is constructed by integrating the equation to the object tracking and trajectory linking process pipeline. Evaluation on challenging dataset demonstrates that proposed method can accurately recover the missing trajectory between two disconnected trajectory segments as well as appropriately constrain a motion of the object to the its goal(or the target state) with uncertainty.

A Method of Segmentation and Tracking of a Moving Object in Moving Camera Circumstances using Active Contour Models and Optical Flow (Active contour와 Optical flow를 이용한 카메라가 움직이는 환경에서의 이동 물체의 검출과 추적)

  • 김완진;장대근;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we propose a new approach for tracking a moving object in moving image sequences using active contour models and optical flow. In our approach object segmentation is achieved by active contours, and object tracking is done by motion estimation based on optical flow. To get more dynamic characteristics, Lagrangian dynamics combined to the active contour models. For the optical flow computation, a method, which is based on Spatiotempo-ral Energy Models, is employed to perform robust tracking under poor environments. A prototype real tracking system has been developed and applied to a contents-based video retrieval systems.

  • PDF

Emulation of Anti-alias Filtering in Vision Based Motion Mmeasurement (비전 센서의 앨리어싱 방지 필터링 모방 기법)

  • Kim, Jung-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 2011
  • This paper presents a method, Exposure Controlled Temporal Filtering (ECF), applied to visual motion tracking, that can cancel the temporal aliasing of periodic vibrations of cameras and fluctuations in illumination through the control of exposure time. We first present a theoretical analysis of the exposure induced image time integration process and how it samples sensor impingent light that is periodically fluctuating. Based on this analysis we develop a simple method to cancel high frequency vibrations that are temporally aliased onto sampled image sequences and thus to subsequent motion tracking measurements. Simulations and experiments using the 'Center of Gravity' and Normalized Cross-Correlation motion tracking methods were performed on a microscopic motion tracking system to validate the analytical predictions.

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.

Bottleneck-based Siam-CNN Algorithm for Object Tracking (객체 추적을 위한 보틀넥 기반 Siam-CNN 알고리즘)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Visual Object Tracking is known as the most fundamental problem in the field of computer vision. Object tracking localize the region of target object with bounding box in the video. In this paper, a custom CNN is created to extract object feature that has strong and various information. This network was constructed as a Siamese network for use as a feature extractor. The input images are passed convolution block composed of a bottleneck layers, and features are emphasized. The feature map of the target object and the search area, extracted from the Siamese network, was input as a local proposal network. Estimate the object area using the feature map. The performance of the tracking algorithm was evaluated using the OTB2013 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.611 in Success Plot and 0.831 in Precision Plot were achieved.

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Realization of automatic video tracker using ASIC (ASIC을 이용한 자동영상 추적기 구현)

  • 강재열;윤상로
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.1885-1896
    • /
    • 1996
  • This paper describes the implementation of the AVT(Automatic video Tracker) using ASIC. The basic tracking algorithm is based on the spatio-temporal gradient method, and adaptive window sizing, track state decision algorithm were also realized. Newly developed ASIC performs recursive image filtering, extraction of spatio-temporal gradient/gradient functions of image in field rate. Using the FPGA/ASIC, the tracker was simply realized in one board type which can be easily applied to various image system. We conformed ASIC operation by computer simulation and tested the system in real tracking situations. From the result, the system can track the moving target which has a velocity of 2-3 pixel/field and a size of varying from 2 to 128 pixes. Also fast refresh rateof motion estimation(60Hz) improves the characteristics of servoing system which forms feedback loop with the tracker.

  • PDF

Object Tracking in Video Sequences using Local Block Features (지역적 영역 컬러 특징 정보를 이용한 이동물체 추적)

  • Moon Won, Choo;Seongah, Chin
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.200-205
    • /
    • 2002
  • In this paper, we propose an object tracking system which extracts moving areas+ shaped on objects in video sequences and decides tracks of moving objects. Color invariances are exploited to extract the plausible object blocks and the degree of radial homogeneity is utilized as local block feature to find out the block correspondences.

  • PDF