• Title/Summary/Keyword: video object extraction

Search Result 111, Processing Time 0.027 seconds

Real-time Face Localization for Video Monitoring (무인 영상 감시 시스템을 위한 실시간 얼굴 영역 추출 알고리즘)

  • 주영현;이정훈;문영식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.48-56
    • /
    • 1998
  • In this paper, a moving object detection and face region extraction algorithm which can be used in video monitoring systems is presented. The proposed algorithm is composed of two stages. In the first stage, each frame of an input video sequence is analyzed using three measures which are based on image pixel difference. If the current frame contains moving objects, their skin regions are extracted using color and frame difference information in the second stage. Since the proposed algorithm does not rely on computationally expensive features like optical flow, it is well suited for real-time applications. Experimental results tested on various sequences have shown the robustness of the proposed algorithm.

  • PDF

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.

Digital Surveillance System with fast Detection of Moving Object (움직이는 물체의 고속 검출이 가능한 디지털 감시 시스템)

  • 김선우;최연성;박한엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.405-417
    • /
    • 2001
  • In this paper, since we currently using surveillance system of analog type bring about waste of resource and efficiency deterioration problems, we describe new solution that design and implementation to the digital surveillance system of new type applying compression techniques and encoding techniques of image data using MPEG-2 international standard. Also, we proposed fast motion estimation algorithm requires much less than the convectional digital surveillance camera system. In this paper a fast motion estimation algorithm is proposed the MPEG-2 video encoding. This algorithm is based on a hybrid use of the block matching technique and gradient technique. Also, we describe a method of moving object extraction directly using MPEG-2 video data. Since proposed method is very simple and requires much less computational power than the conventional object detection methods. In this paper we don't use specific H/W and this system is possible only software encoding, decoding and transmission real-time for image data.

  • PDF

3D Depth Information Extraction Algorithm Based on Motion Estimation in Monocular Video Sequence (단안 영상 시퀸스에서 움직임 추정 기반의 3차원 깊이 정보 추출 알고리즘)

  • Park, Jun-Ho;Jeon, Dae-Seong;Yun, Yeong-U
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.549-556
    • /
    • 2001
  • The general problems of recovering 3D for 2D imagery require the depth information for each picture element form focus. The manual creation of those 3D models is consuming time and cost expensive. The goal in this paper is to simplify the depth estimation algorithm that extracts the depth information of every region from monocular image sequence with camera translation to implement 3D video in realtime. The paper is based on the property that the motion of every point within image which taken from camera translation depends on the depth information. Full-search motion estimation based on block matching algorithm is exploited at first step and ten, motion vectors are compensated for the effect by camera rotation and zooming. We have introduced the algorithm that estimates motion of object by analysis of monocular motion picture and also calculates the averages of frame depth and relative depth of region to the average depth. Simulation results show that the depth of region belongs to a near object or a distant object is in accord with relative depth that human visual system recognizes.

  • PDF

Unsupervised Segmentation of Objects using Genetic Algorithms (유전자 알고리즘 기반의 비지도 객체 분할 방법)

  • 김은이;박세현
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • The current paper proposes a genetic algorithm (GA)-based segmentation method that can automatically extract and track moving objects. The proposed method mainly consists of spatial and temporal segmentation; the spatial segmentation divides each frame into regions with accurate boundaries, and the temporal segmentation divides each frame into background and foreground areas. The spatial segmentation is performed using chromosomes that evolve distributed genetic algorithms (DGAs). However, unlike standard DGAs, the chromosomes are initiated from the segmentation result of the previous frame, then only unstable chromosomes corresponding to actual moving object parts are evolved by mating operators. For the temporal segmentation, adaptive thresholding is performed based on the intensity difference between two consecutive frames. The spatial and temporal segmentation results are then combined for object extraction, and tracking is performed using the natural correspondence established by the proposed spatial segmentation method. The main advantages of the proposed method are twofold: First, proposed video segmentation method does not require any a priori information second, the proposed GA-based segmentation method enhances the search efficiency and incorporates a tracking algorithm within its own architecture. These advantages were confirmed by experiments where the proposed method was success fully applied to well-known and natural video sequences.

A robust Correlation Filter based tracker with rich representation and a relocation component

  • Jin, Menglei;Liu, Weibin;Xing, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5161-5178
    • /
    • 2019
  • Correlation Filter was recently demonstrated to have good characteristics in the field of video object tracking. The advantages of Correlation Filter based trackers are reflected in the high accuracy and robustness it provides while maintaining a high speed. However, there are still some necessary improvements that should be made. First, most trackers cannot handle multi-scale problems. To solve this problem, our algorithm combines position estimation with scale estimation. The difference from the traditional method in regard to the scale estimation is that, the proposed method can track the scale of the object more quickly and effective. Additionally, in the feature extraction module, the feature representation of traditional algorithms is relatively simple, and furthermore, the tracking performance is easily affected in complex scenarios. In this paper, we design a novel and powerful feature that can significantly improve the tracking performance. Finally, traditional trackers often suffer from model drift, which is caused by occlusion and other complex scenarios. We introduce a relocation component to detect object at other locations such as the secondary peak of the response map. It partly alleviates the model drift problem.

Image Separation of Talker from a Background by Differential Image and Contours Information (차영상 및 윤곽선에 의한 배경에서 화자분리)

  • Park Jong-Il;Park Young-Bum;Yoo Hyun-Joong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.671-678
    • /
    • 2005
  • In this paper, we suggest an algorithm that allows us to extract the important obbject from motion pictures and then replace the background with arbitrary images. The suggested technique can be used not only for protecting privacy and reducing the size of data to be transferred by removing the background of each frame, but also for replacing the background with user-selected image in video communication systems including mobile phones. Because of the relatively large size of image data, digital image processing usually takes much of the resources like memory and CPU. This can cause trouble especially for mobile video phones which typically have restricted resources. In our experiments, we could reduce the requirements of time and memory for processing the images by restricting the search area to the vicinity of major object's contour found in the previous frame based on the fact that the movement of major object is not wide or rapid in general. Specifically, we detected edges and used the edge image of the initial frame to locate candidate-object areas. Then, on the located areas, we computed the difference image between adjacent frames and used it to determine and trace the major object that might be moving. And then we computed the contour of the major object and used it to separate major object from the background. We could successfully separate major object from the background and replate the background with arbitrary images.

An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera (다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현)

  • Lee, Byung-Eun;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.17-22
    • /
    • 2009
  • DaVinci processors are popular media processors for implementing embedded multimedia applications. They support dual core architecture: ARM9 core for video I/O handling as well as system management and peripheral handling, and DSP C64+ core for effective digital signal processing. In this paper, we propose our efforts for optimal implementation of object tracking algorithm in DaVinci-based smart camera which is being designed and implemented by our laboratory. The smart camera in this paper is supposed to support object detection, object tracking, object classification and detection of intrusion into surveillance regions and sending the detection event to remote clients using IP protocol. Object tracking algorithm is computationally expensive since it needs to process several procedures such as foreground mask extraction, foreground mask correction, connected component labeling, blob region calculation, object prediction, and etc. which require large amount of computation times. Thus, if it is not implemented optimally in Davinci-based processors, one cannot expect real-time performance of the smart camera.

  • PDF

Determining Method of Factors for Effective Real Time Background Modeling (효과적인 실시간 배경 모델링을 위한 환경 변수 결정 방법)

  • Lee, Jun-Cheol;Ryu, Sang-Ryul;Kang, Sung-Hwan;Kim, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.

Modified HOG Feature Extraction for Pedestrian Tracking (동영상에서 보행자 추적을 위한 변형된 HOG 특징 추출에 관한 연구)

  • Kim, Hoi-Jun;Park, Young-Soo;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • In this paper, we proposed extracting modified Histogram of Oriented Gradients (HOG) features using background removal when tracking pedestrians in real time. HOG feature extraction has a problem of slow processing speed due to large computation amount. Background removal has been studied to improve computation reductions and tracking rate. Area removal was carried out using S and V channels in HSV color space to reduce feature extraction in unnecessary areas. The average S and V channels of the video were removed and the input video was totally dark, so that the object tracking may fail. Histogram equalization was performed to prevent this case. HOG features extracted from the removed region are reduced, and processing speed and tracking rates were improved by extracting clear HOG features. In this experiment, we experimented with videos with a large number of pedestrians or one pedestrian, complicated videos with backgrounds, and videos with severe tremors. Compared with the existing HOG-SVM method, the proposed method improved the processing speed by 41.84% and the error rate was reduced by 52.29%.