• Title/Summary/Keyword: vibration time control

Search Result 801, Processing Time 0.028 seconds

A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid (MR유체를 이용한 엔진마운트의 슬라이딩모드제어)

  • 이동길;안영공;정석권;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

Performance Evaluation of Vibration Control According to Installation Location of a Sky-bridge (스카이브릿지 설치위치에 따른 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Park, Yong-Koo;Ko, Hyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.65-74
    • /
    • 2010
  • In this study, the vibration control effect according to the installation location of the sky-bridge and the difference of natural periods of the connected buildings has been investigated. To this end, 40-story and 50-story building structures connected by a sky-bridge were used as example structures and the equivalent modeling method was used. Boundary nonlinear time history analyses were performed using El Centro and Taft earthquakes to investigate the dynamic behavior of the example structures and vibration control effect of the sky-bridge. Based on numerical results, it has been shown that displacement responses can be effectively controlled as the installation floor of the sky-bridge increases and acceleration responses can be effectively reduced when the sky-bridge is installed on the mid-stories of the example building.

  • PDF

Time-frequency analysis of reactor neutron noise under bubble disturbance and control rod vibration

  • Yuan, Baoxin;Guo, Simao;Yang, Wankui;Zhang, Songbao;Zhong, Bin;Wei, Junxia;Ying, Yangjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1088-1099
    • /
    • 2021
  • Time-frequency analysis technique is an effective analysis tool for non-stationary processes. In the field of reactor neutron noise, the time-frequency analysis method has not been thoroughly researched and widely used. This work has studied the time-frequency analysis of the reactor neutron noise experimental signals under bubble disturbance and control rod vibration. First, an experimental platform was established, and it could be employed to reactor neutron noise experiment and data acquisition. Secondly, two types of reactor neutron noise experiments were performed, and valid experimental data was obtained. Finally, time-frequency analysis was conducted on the experimental data, and effective analysis results were obtained in the low-frequency part. Through this work, it can be concluded that the time-frequency analysis technique can effectively investigate the core dynamics behavior and deepen the identification of the unstable core process.

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Influence of Delay Time and Priming Location on the Blast-Induced Ground Vibration (발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향)

  • Kang, Choo Won;Ryu, Bok Hyun;Choi, Tae Hong
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.97-109
    • /
    • 2014
  • In order to identify the characteristics of the propagation depending on delay time (20, 25 ms) and priming location (top priming, middle priming, bottom priming), test blasts were carried out a total of 4 times using different spacing, burden, drilling length, charge per delay and was derived the formula to predict blast vibration. This study investigated the characteristics of vibration by analysis of the nomogram and prediction of Peak Particle Velocity (PPV) from delay time and priming location by the formula to predict ground vibration. And it analyzed the trends of vibration increase by standards charge 0.5, 1.6, 5, 15 kg. Standards charge is "Blasting design and construction guidelines to road construction" by the Ministry of Land, Infrastructure and Transport. Depending on the charge in favor of vibration control method is proposed. Thus, when the design was to be used as a variable.

A Robust Input Modification Approach for High Tracking Control Performance of Flexible Joint Robot

  • Park, Min-Kyu;Lee, Sang-Hun;Hur, Jong-Sung;Yim, Jong-Guk;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1249-1253
    • /
    • 2004
  • A robust input modification approach to the control of flexible joint robot is presented. In our previous study, we developed an observer based state feedback control for the suppression of residual vibration of a robot. The control was very effective in suppressing the inherent vibration of a flexible joint robot. However it did not meet high performance requirements under high speed motion and model uncertainties. As a solution of the problem, we present an input modification method with robustness against parametric uncertainties. The main idea of the proposed input modification method is to generate a modified reference position command for fast and accurate motion of the robot. Using this proposed method we can reduce the servo delay and settling time by about 60% and substantially improve the path accuracy.

  • PDF

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.627-632
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological (MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

  • PDF

A Study of 'Mode Selecting Stochastic Controller' for a Dynamic System Under Random Vibration

  • Kim Yong-Kwan;Lee Jong-Bok;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1846-1855
    • /
    • 2005
  • This paper presents a new stochastic controller applied on the vibration control system under irregular disturbances based on the mode selection scheme. Measured displacement and frequency characteristics are simultaneously used in designing a mode selecting controller. This technique is validated by applying to the suppression problem of a flexible beam with randomly vibrated circumstances. The presented method, called Mode Selecting Stochastic Controller, uses the frequency measurement of the flexible system based on a Fast-Fourier transformation algorithm. This controller is constructed by combining mode selection method with previous known Stochastic Controller in real time: Numerical simulations and several experiments are conducted to validate the proposed method. The performance of the proposed method is compared with a stochastic controller developed recently. This method was improved compared with previous one.

Dual Servo Control for Aperture Type Near Field Storage Head (개구형 근접장 헤드장치의 간극제어를 위한 이중 서보 제어)

  • Lee, Sung-Q;Kim, Eun-Kyoung;Park, Kang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.479-484
    • /
    • 2006
  • This paper presents an active control of the aperture type near-field storage head. In order to achieve a fast and accurate control, a dual servo control algorithm is applied. Based on the big difference in time constants of two actuators, they are used independently. With the combination fine and coarse actuator, the disk is rotated up to 10 rpm speed until the gap is controlled within 100 nm. From the experimental results, the feasibility and the performance of active dual servo gap control is proved.