• 제목/요약/키워드: vibration signatures

검색결과 26건 처리시간 0.018초

발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석 (Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant)

  • 배용채;이현;김연환
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

A review on recent development of vibration-based structural robust damage detection

  • Li, Y.Y.;Chen, Y.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.159-168
    • /
    • 2013
  • The effect of structural uncertainties or measurement errors on damage detection results makes the robustness become one of the most important features during identification. Due to the wide use of vibration signatures on damage detection, the development of vibration-based techniques has attracted a great interest. In this work, a review on vibration-based robust detection techniques is presented, in which the robustness is considerably improved through modeling error compensation, environmental variation reduction, denoising, or proper sensing system design. It is hoped that this study can give help on structural health monitoring or damage mitigation control.

신경회로망을 이용한 연삭가공의 트러블 인식에 관한 연구(I) (A Study on the Monitoring System of the Grinding Troubles Utilizing Neural Networks(l))

  • 하만경;곽재섭;송지복;김건회;김희술
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.149-155
    • /
    • 1996
  • Recent researches in the trouble monitoring system of grinding process have emphasized the use of deep knowledge. Such works include the monitoring and diagnostic systems for cylindrical grinding using sensors on chatter vibration and grinding burn during the process. But, since grinding operations are especially related with a lalrge amount of ambique parameters, it is effectively difficult to detect the grinding troubles occuring during the grinding process. In this paper, monitoring system for grinding utilizes the neural networks based on grinding power signatures. The monitoring system of grinding operations, which makes use of PDP neural networks, is presented. Then, the implementation results by computer simulations and experimental data with respect to chatter vibration and grinding burn are compared.

  • PDF

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.463-477
    • /
    • 2022
  • In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.

판형교의 가속도-임피던스 신호를 이용한 하이브리드 손상 모니터링 기법 (Hybrid Damage Monitoring Technique for Plate Girder Bridges using Acceleration-Impedance Signatures)

  • 홍동수;조현만;나원배;김정태;박규해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.197-202
    • /
    • 2008
  • In this paper, a hybrid vibration-impedance approaches is newly proposed to detect the occurrence of damage, the location of damage, and extent of damage in steel plate-girder bridges. The hybrid scheme mainly consists of three sequential phases: 1) to alarm the occurrence of damage, 2) to classify the alarmed damage, and 3) to estimate the classified damage in detail. Damage types of interest include flexural stiffness-loss in girder and bolts-loose in supports. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation method. The feasibility of the proposed system is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid vibration-impedance signatures were measured for several damage scenarios.

  • PDF

잡음 환경 하에서의 전기-역학적 임피던스 기반 조류발전 구조물의 장기 건전성 모니터링 (Impedance-based Long-term Structural Health Monitoring for Tidal Current Power Plant Structure in Noisy Environments)

  • 민지영;심효진;윤정방;이진학
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.59-65
    • /
    • 2011
  • In structural health monitoring (SHM) using electro-mechanical impedance signatures, it is a critical issue for extremely large structures to extract the best damage diagnosis results, while minimizing unknown environmental effects, including temperature, humidity, and acoustic vibration. If the impedance signatures fluctuate because of these factors, these fluctuations should be eliminated because they might hide the characteristics of the host structural damages. This paper presents a long-term SHM technique under an unknown noisy environment for tidal current power plant structures. The obtained impedance signatures contained significant variations during the measurements, especially in the audio frequency range. To eliminate these variations, a continuous principal component analysis was applied, and the results were compared with the conventional approach using the RMSD (Root Mean Square Deviation) and CC (Cross-correlation Coefficient) damage indices. Finally, it was found that this approach could be effectively used for long-term SHM in noisy environments.

WIGNER-VILLE INTERPRETATION OF MUSICAL SOUND AND TRANSIENT VIBRATION SIGNALS

  • Kim, Yang-Hann;Park, Yon-Kyu
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.752-757
    • /
    • 1994
  • Very often, one would like to have visual image of mechanical or acoustical events such as musical sound and transient vibrations. Conventional methods to visualize the signal, such as power spectrum, do not normally allow to cultivate the signal of interests due to their inherent limitation on transient signals. Other than the conventional method, one could use an instantaneous frequency which can reveal the variation of frequency in terms of time. Nevertheless it is quite sensitive to noise and can not resolve the frequency components of signals; normally produces additional components other than those of the signals. In this paper, we introduce the Wigner-Ville spectrum to see the transient characteristics of signal, especially musical sound and transient mechanical vibration signatures. For musical sound, several popular western classic music have been selected for the analysis. For the transient mechanical signature, the signals obtained from the car door experiment and the beam experiment are interpreted in terms of Wigner-Ville spectrum. Results demonstrate the visual expressions of transient signals; musical sound and vibrations.

  • PDF

가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계 (Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature)

  • 김정태;박재형;홍동수;나원배
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.135-146
    • /
    • 2008
  • 본 논문에서는 가속도 및 임피던스 신호를 이용하여 프리스트레스트 콘크리트(PSC) 거더교에 적합한 하이브리드 손상 모니터링 체계를 제안하였다. PSC 거더교의 주된 손상유형으로 텐던의 긴장력 감소와 콘크리트 거더의 휨 강성 저하를 고려하였다. 제안된 하이브리드 체계는 손상경보, 손상분류 및 손상평가와 같이 크게 3단계로 구성하였다. 첫 번째 단계에서는 가속도 특성 변화를 모니터링하여 전역적인 손상의 발생을 경보한다. 두 번째 단계에서는 임피던스 특성 변화를 모니터링하여 손상유형이 긴장력 감소인지 휨 강성 저하인지를 분류한다. 세 번째 단계에서는 손상유형에 적합한 손상평가기법을 이용하여 손상의 위치와 크기를 평가한다. 손상유형이 휨 강성 저하인 경우에서는 모드형상기반 손상검색 기법을 적용하였고, 손상유형이 긴장력 감소인 경우에서는 고유진동수기반 긴장력 추정 기법을 적용하였다. 모형 PSC 거더 실험을 통해 제안된 하이브리드 손상모니터링 체계의 유용성을 평가하였다.

관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘 (FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint)

  • 강민식
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.