• Title/Summary/Keyword: vibration of machine

Search Result 1,200, Processing Time 0.032 seconds

Experimental Investigation to Establish Correlation Between Specific Film Thickness and Vibration Signals in Spur Gear System (스퍼 기어의 진동 신호와 비 유막 두께(Specific Film Thickness)의 상관관계에 관한 실험적 연구)

  • Kim, Jong Sik;Amarnath, M.;Lee, Sang Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1005-1012
    • /
    • 2014
  • Gears are critical elements in automobiles, and their use as power transmitting machine elements in engineering applications is quite extensive. In the areas of contact between gear teeth, the condition of a gear is likely to deteriorate due to contact fatigue, wear, material defects, lubrication failure, etc. Thus, it is necessary to monitor its condition to ensure smooth power transmission. Gear teeth deterioration causes failures such as abrasive wear, scuffing, pitting, and spalling. These failures lead to a higher level of vibration signals in the gear system. This paper presents the results of an experiment on the surface fatigue wear of a spur gear system. The correlation between the estimated specific film thickness, statistical parameter of the vibration signals, and Stribeck curve was considered in this study.

A Control Method of Semi-active TMD for Vibration Control (진동제어를 위한 준능동 TMD의 제어기법)

  • Lee, Ki-Hak;Kim, Gee-Cheol;Lee, Eun-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.53-61
    • /
    • 2007
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. When TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned TMs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations duo to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative or building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness of STMD with respect to equivalent TMD.

  • PDF

Implementation of Monitoring System for Smart Factory (스마트 팩토리를 위한 모니터링 시스템 구현)

  • Yoon, Jae-Hyeon;Jung, Jong-Mun;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.485-489
    • /
    • 2018
  • For the construction of smart factory that are part of the Fourth Industrial Revolution, data from the production environments and production machines should be collected, analyzed, and feedback should be given to predict when failures take place or parts should be replaced. For this purpose, a system that monitors the production environments and the status of the production machines are required. In this paper, the monitoring system for mobile devices and PC is implemented by collecting environmental data from production sites and sensor data of production machine using LoRa, a low-power wireless communication technology. On the mobile devices, production environments and vibration data can be displayed in real time. In PC monitoring program, sensor data can be displayed graphically to check standard deviation and data variation. The implemented system is used to collect data such as temperature, humidity, and atmospheric pressure of the production environment, and vibration data of production machines.

Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System (신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine (방전 가공기용 복합재료 외팔보의 제작 및 성능평가)

  • 최진호
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2000
  • Electrical discharge machining (EDM) cuts metal by discharging electric current across a thin gap between tool and workpiece. Electrical discharge wire cutting, a special form of EDM, uses a continuously moving conductive wire as an electrode, and is widely used for the manufacture of punches, dies and stripper plates. In the wire cutting process, the moving wire is usually supported by cantilever arm and wire guides. As the wire traveling speed has been increased in recent years to improve productivity, the vibration of the cantilever arm occurs, which reduces the positional accuracy of the machine. Therefore, the design and manufacture of the cantilever arm with high dynamic characteristics have become important as the machining speed increases. In this paper, the cantilever arm for guiding the moving wire was designed and manufactured using carbon fiber epoxy composite in order to improve the static and dynamic characteristics. Specimens for the composite cantilever arm were manufactured and tested to investigate the effect of the number of reinforcing plies and length fitted to steel flange on the load capacity. Also, the finite element analysis using layer and contact elements was performed to compare the calculated results with the experimental ones. From the results, the prototype of the composite cantilever arm for the electrical discharge wire cutting machine was manufactured and the static and dynamic characteristics were compared with those of the conventional steel cantilever arm.

  • PDF

Application of Semi-active TMD for Floor Vibration Control (바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.49-56
    • /
    • 2007
  • Passive, active and semi-active control system are classified in floor vibration control system by providing control force. This paper discusses the application of a new class of semi-active TMD(MR-TMD), for the reduction or floor vibrations due to machine and human movements. This MR-TMD consists of passive TMD and MR damper. Here, displacement-based control methods are used to assess the performance of this STMD(MR-TMD). And, skyhook and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. If the allowed operation space of tuned mass is limited in MR-TMD system, skyhook algorithm is more efficient than groundhook algorithm for floor vibration control. Hybrid control method demonstrates the efficiency of MR-TMD with respect to another methods.

  • PDF

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

A Case Study on the Shaft Construction Using Electronic Detonators (전자뇌관(HiTRONIC II™)을 이용한 수직구 시공 사례)

  • Hwang, Nam-Sun;Jin, Geun-Woo;Yeo, Jin-Hyeok;Jeong, Dong-Ho;Kim, Yeon-Hong
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.22-35
    • /
    • 2020
  • Recently, electronic detonators have been widely used in various sites. Electronic detonators are often used for the purpose of reducing the noise and vibration produced by blasting. In addition, electronic detonators are used for precision blasting at sites where mechanical excavation techniques are applied due to proximity of safety things or where blasting by conventional detonators are not possible. Various technologies are being attempted at the blasting site to increase constructivity and lower production costs by using electronic detonators. In this paper, we would like to introduce a construction case that use of electronic detonators in the situation of safety things being adjacent increases the efficiency of construction while meeting the ground vibration criteria of Ministry of Land, Infrastructure, and Transport. The blasting was carried out at domestic and overseas shaft using HiTRONIC II™, produced by Hanwha. Generally the shaft blasting is performed by dividing the blasting surface because of the noise and vibration caused by the blasting. but, in the case introduced in this paper, the blasting was carried out once without dividing the blasting surface, thus the construction period could be shortened.

A study on machine learning-based anomaly detection algorithm using current data of fish-farm pump motor (양식장 펌프 모터 전류 데이터를 이용한 머신러닝 기반 이상 감지 알고리즘에 관한 연구)

  • Sae-yong Park;Tae Uk chang;Taeho Im
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.37-45
    • /
    • 2023
  • In line with the 4th Industrial Revolution, facility maintenance technologies for building smart factories are receiving attention and are being advanced. In addition, technology is being applied to smart farms and smart fisheries following smart factories. Among them, in the case of a recirculating aquaculture system, there is a motor pump that circulates water for a stable quality environment in the tank. Motor pump maintenance activities for recirculating aquaculture system are carried out based on preventive maintenance and data obtained from vibration sensor. Preventive maintenance cannot cope with abnormalities that occur before prior planning, and vibration sensors are affected by the external environment. This paper proposes an anomaly detection algorithm that utilizes ADTK, a Python open source, for motor pump anomaly detection based on data collected through current sensors that are less affected by the external environment than noise, temperature and vibration sensors.

New Mount with Moving-Coil-Type Electromagnetic Actuator for Naval Shipboard Equipment (가동코일형 전자기식 작동기를 결합한 함정 탑재장비용 마운트 개발)

  • Shin, Y.H.;Moon, S.J.;Jung, W.J.;Jeon, J.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.885-894
    • /
    • 2013
  • In this study, a new hybrid mount with a moving-coil-type electromagnetic actuator is developed to reduce the vibration transmitted from naval shipboard equipment to the ship hull structure. The detailed design of the hybrid mount is determined through several design stages with electromagnetic numerical analysis using Maxwell software. The hybrid mount, which combines a rubber mount with an electromagnetic actuator, has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to check the design specifications. Finally, control tests are carried out on the hybrid mount to confirm its performance and applicability.