• Title/Summary/Keyword: vibration of machine

Search Result 1,195, Processing Time 0.028 seconds

Human Error Probability Assessment During Maintenance Activities of Marine Systems

  • Islam, Rabiul;Khan, Faisal;Abbassi, Rouzbeh;Garaniya, Vikram
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.42-52
    • /
    • 2018
  • Background: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man-machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress. For example, extreme weather condition affects seafarers' performance, increasing the chances of error, and, consequently, can cause injuries or fatalities to personnel. An effective human error probability model is required to better manage maintenance on-board ships. The developed model would assist in developing and maintaining effective risk management protocols. Thus, the objective of this study is to develop a human error probability model considering various internal and external factors affecting seafarers' performance. Methods: The human error probability model is developed using probability theory applied to Bayesian network. The model is tested using the data received through the developed questionnaire survey of >200 experienced seafarers with >5 years of experience. The model developed in this study is used to find out the reliability of human performance on particular maintenance activities. Results: The developed methodology is tested on the maintenance of marine engine's cooling water pump for engine department and anchor windlass for deck department. In the considered case studies, human error probabilities are estimated in various scenarios and the results are compared between the scenarios and the different seafarer categories. The results of the case studies for both departments are also compared. Conclusion: The developed model is effective in assessing human error probabilities. These probabilities would get dynamically updated as and when new information is available on changes in either internal (i.e., training, experience, and fatigue) or external (i.e., environmental and operational conditions such as weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress) factors.

Surface Characteristics based on Material and Process Changes in Surface Treatment using Fast Tool Servo (FTS를 이용한 나노표면개질공정의 공정변화와 소재에 따른 표면특성)

  • Kim, Mi Ru;Lee, Deug Woo;Lee, Seung Jun;Liang, Li;Kim, Jong Man;Jang, Nam-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.639-646
    • /
    • 2015
  • A treatment for improving the characteristics of a surface is very important in increasing the life of machine parts. Many studies have been carried out on the surface characteristics after such treatments. For enhanced eco-technology, an alternative to a conventional chemical surface treatment process is essential. Ultrasonic nano-crystal surface modification (UNSM) technology is a physical environmentally friendly surface treatment method. This technology was developed in domestic and currently being used. As the mechanism of UNSM technology, a ball tip attached to an ultrasonic vibration device strikes the metal surface at nearly 20,000 times per second. The resulting modified surface layer improves the surface characteristics. This paper describes a self-developed fast tool servo system applied to the UNSM process as a vibration module within a high-frequency bandwidth. After describing the surface modification process based on the material and process changes, the surface characteristics are compared.

Vibration Characteristics of a Model Ship with Weis-Fogh type Ship's Propulsion Mechanism (Weis-Fogh형 추진기구를 장착한 모형선의 진동특성)

  • Ro, Ki-Deok;Choi, Byeong-Kuen;Lee, Jeong-Hwan;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.69-75
    • /
    • 2010
  • A model ship equipped with the Weis-Fogh type ship's propulsion mechanism, which is consisted of one wing in a squared channel, was constructed. Sailing and vibration tests of the model ship were performed with the opening angles in a pool. The results are summarized as follows. The thrust and the speed of model ship were the highest for the spring-type wing of which the opening angle is automatically controlled in one stroke. Moreover, these values were approximately reduced by 4% from $30^{\circ}$ opening angle to $15^{\circ}$ in order. The maximum amplitude and RMS values of the model ship were the lowest for the wing having the opening angle of $30^{\circ}$, but were the largest for spring-type wing. And in case of the same opening angle, these values were lower for the ship on sailing than that on stationary.

Convergence Study on Durability Analysis of Scooter Seat (스쿠터 시트의 내구성 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.165-170
    • /
    • 2019
  • This study carried out the structural analysis and vibration analysis on scooter seat. By comparing with three kinds of B-bone A, Julio B, and City Ace C, the load was applied to scooter seat as much as a weight of person. Through structural analysis, this study examined which seat is most deformed by comparing the deformation each other or affords passengers most convenience and does not afford passengers the inconvenience by absorbing the vibration during driving. Model C has the most total deformation at the structural analysis result and Model B is seen to be changed to be convenient to sit the deformation as it deforms largely. Through this study, which seat is most convenient and becomes strong on durability can be confirmed. As the durability analysis result data of scooter seat model obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

A STUDY OF ADDITIONAL VIBRATION EFFECT ON DENTIN BOND STRENGTH (진동이 상아질 결합력에 미치는 영향에 관한 연구)

  • Lee, Jin;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.632-640
    • /
    • 2002
  • The objective of the study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration into dentinal tubules achieved with those gained using the conventional technique. Eighty-eight noncarious extracted human permanent molar teeth were sectioned to remove the coronal enamel and were embedded in 1-inch PVC pipe with acrylic resin. The occlusal surfaces were placed so that the tooth and the embedding medium were at the same level to form one flat surface, and the samples were subsequently polished with silicon carbide abrasive papers. The samples were randomly assigned to 4 groups(n=22). On Group 1 and 2, Single Bond(3M-ESPE, St. Paul, USA) was used, and on Group 3 and 4, One-Step(Bisco Inc., Schaumburg, USA) was used, and each was applied according to its manufacturer's instructions. For Group 2 and Group 4, vibration was applied with ultrasonic scaler for 10 seconds, and the adhesive was light-cured for 10 seconds. Resin composite was condensed on to the prepared surface in two increments using a mold kit(Ultradent Products Inc., USA) and each was light-cured for 40 seconds. After 24 hours in tap water at room temperature the specimens were thermocycled, and shear bond strengths were measured with a universal testing machine(Instron 4465, Canton, USA). To investigate infiltration patterns of the adhesive materials, the surface of specimen was examined with scanning electron microscope. The results were as follows. 1. The shear bond strengths of vibration groups(Group 2, Group 4) were significantly greater than those of the non-vibration groups(Group 1, Group 3)(p<0.05). 2. The shear bond strengths of Single Bond and One-Step were not significantly different (p>0.05). 3. The vibration groups showed greater number of resin tags in tubules and lateral branches under SEM.

  • PDF

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.