• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.029 seconds

Electrode Shape Optimization of Piezo Sensors Using Genetic Algorithm (유전 알고리듬을 이용한 압전센서의 전극형상 최적화)

  • Lee Ki-Moon;Park Hyun-Chul;Park Chul-Hue
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.698-704
    • /
    • 2006
  • This paper presents an electrode shape design method for the multi-mode sensors that could deteict the selected structural multiple modes. The structure used for this study is an isotropic cantilever beam type with a PVDF (polyvinylidene fluoride) which is bonded onto the structure as a sensor. The shape optimization problem is solved by using Genetic Algorithm (GA) with an appropriate objective function. The performance of analytical optimal shape sensor is compared with that of experimental work. The results show that the, obtained electrode shape sensors have good performance to detect the multiple vibration modes simultaneously.

Optimal Control of a Flexible Link Robot with Modelling Errors (모델링 오차를 갖는 유연 링크 로봇 최적 제어)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.791-800
    • /
    • 1996
  • Linear LQG controller has been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the model upon which the controller is designed. In this study, the flexible modes of the link manipulator are considered to have uncertain parameters, which can be represented by random variable and these parameters are reflected on the weighting of performance. In this method, the exact modelling for the flexible modes is not necessary. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance and the stability-robustness of the proposed controller reaches reasonably the one based on the full model.

  • PDF

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Spillover Suppression in a Flexible Structure using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버억제)

  • Park, Un-Sik;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.499-504
    • /
    • 2000
  • Since large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional system, they have to be modeled into large finite-dimensional systems for control system design. Besides, there are fundamental problems in active vibration control of the large flexible structures. For example, a modeled large finite-dimensional system must be controlled with a much smaller dimensional controller. This causes the spillover phenomenon which degrades the control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we proposed a novel control method for spillover suppression in the control of large flexible structures by using eigenstructure assignment. Its effectiveness in spillover suppression is investigated and verified by the numerical experiments using an example of the simply supported flexible beam which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Vibration Characteristics of Tires for Light Truck (경상용차용 타이어의 진동특성)

  • 김용우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.102-108
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than their corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quite low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

Characteristics of Low-Frequency Combustion-driven Oscillation in a Surface Burner (표면연소기의 저주파 연소진동음의 특성)

  • 한희갑;이근희;권영필
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.991-997
    • /
    • 2000
  • The objective of this study is to examine the onset condition and the frequency characteristics of the low-frequency combustion oscillation in a surface burner. For this purpose, extensive parametric studies have been performed experimentally and the effects of size of each section, the equivalence ratio, and the entrance velocity on oscillatory behavior explored. The experimental results were discussed in comparison with the other combustors associated tilth the low-frequency combustion oscillation. The combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. The oscillation frequency is dependent not on the burner geometry but on the equivalence ratio and the combustion load. Low-frequency combustion mode was formed to be divided into two different modes, named C1 and C2 respectively. Two modes occurred individually, simultaneously or transitionally according to the equivalence ratio and combustion load. The characteristics of low-frequency oscillation is different from each other depending on the type of combustors. The surface burner has also its own characteristics of low -frequency oscillation.

  • PDF

Elliptical Trajectory Analysis of Ultrasonic Linear Motor using ANSYS (ANSYS를 이용한 초음파 리니어 모터의 타원궤적 해석)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.292-295
    • /
    • 2002
  • Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. In this paper, elliptical trajectory of transducer was analyzed by employing the finite element method.

  • PDF

Analysis on the Hunting Motion of the KTX (KTX 헌팅운동 해석)

  • Lee Seung-Il;Kim Jae-Chul;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.755-761
    • /
    • 2003
  • The dynamic analysis of the KTX can predict the dynamic motions which occurred in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom show the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAMS/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity and wheel contact point.

  • PDF

Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors

  • Jafarboland, Mehrdad;Zadehbagheri, Mahmoud
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.319-326
    • /
    • 2011
  • Nowadays numerous research projects are being conducted in the field of electric motors. Non-modeling of flexible connections such as couplings and the belt-pulley do not show some real behaviors. With an increase in the number of connections and drive factors, these Non-modeled modes become more important. The coupling of two electric motors, instead of one motor, in submarine propeller force is an obvious example which shows that Non-modeled vibration modes caused by flexible connections can disturb controller operation and make undesirable vibrations in the submarine body. In this paper a dynamic model of flexible connections and a completed dynamic model of two different coupled electric models is presented. A robust controller for the completed model is also amended so that the two controlling targets of a desired speed adjustment and an appropriate load division between the two motors with sufficient accuracy are achieved.

A Modified Simple Acoustic Analysis of Rectangular Simple Expansion Chamber with Consideration of Higher Order Modes (고차모드를 고려한 사각형 단순 확장관의 간편음향해석법의 개선)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.340-347
    • /
    • 1999
  • The acoustic performance of reactive type single expansion chamber can be calculated theoretically by plane wave theory. But higher order model should be considered to widen the frequency range. Mode matching method has been developed to consider higher order modes, but very complicated algebra should be used. Munjal suggested a numerical collocation method, which can overcome the shortcomings of mode matching method, using the compatibility conditions for acoustic pressure and particle velocity at the junctions of area discontinuities. But the restriction of Munjal's method is that the ratio between the area of inlet(or outlet) pipe and that of chamber must be natural number. In this paper, the new method was suggested to overcome the shortcomings of Munjal's method. The predictions by this method was also compared with those by the finite element method and Munjal's method in order to demonstrate the accuracy of the modified method presented here.

  • PDF