• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.024 seconds

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

Active Control of Clamped Beams using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동 제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1190-1199
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the 2nd, 3rd and 4th modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.

A Mathematical Approach for Vibration Analysis of an Pickup Actuator (수학적 전개에 의한 픽업 액추에이터의 진동 분석)

  • Lee, Kyung Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.792-798
    • /
    • 2012
  • This study shows the vibration characteristics of an actuator with six wire-suspensions, used in optical pickups of optical disc drives (ODDs). In this paper, the vibration characteristics of this beam structure is induced mathematically. To obtain vibration modes of focusing direction, the vibration analysis is achieved in lateral and longitudinal directions of the structure. The accuracy of induced vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode shapes can be modified by changing design parameters in mathematical expressions.

  • PDF

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction (승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구)

  • Yoo, Ji Woo;Chae, Ki-Sang;Cho, Jin Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

Vibration Sensing and Control of a Plate Using Optical Fiber Sensor (광섬유 센서를 이용한 평판의 진동 감지 및 제어)

  • Kim, Do-Hyung;Han, Jae-Hung;Yang, Seung-Man;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.459-464
    • /
    • 2001
  • Vibration control of a plate using an optical fiber sensor and a PZT actuator is considered in this study. An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and PZT actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion is validated by forced vibration experiment. A numerical model of the plate is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. It is found that the vibration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

  • PDF

Micro-Vibration Test on a Two-Axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Choi, Hong-Taek;Park, Gee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.420-424
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting on image jitter response of a satellite. The gimbal system can be rotated on its azimuth and elevation axes, resulting in variation of its moment of inertia and structural modes, so that generates non-linear vibration characteristics. In order to estimate the jitter response, it is an indispensable process to characterize micro-vibration disturbance of the 2-axis gimbal system. In the present research, the vibration characteristics of the 2-axis gimbal system was investigated with respect to the types of stepping motors. The micro-vibration tests were performed for 2-phase and 5-phase stepping motors. The test results show that the disturbance can be reduced with vibration attenuation ratio of 60% by replacing the 2-phase stepping motor with the 5-phase one.

  • PDF

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF